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The classification of extension of the field commutator outside the light cone suggested by
Constantinescu and Taylor is analyzed and shown to be to a large extent mathematically equivalent
to the notion of essential locality, introduced in a recent paper by the present authors. Simple model
fields are constructed which disprove the interpretation given by Constantinescu and Taylor. Essential

locality is shown to hold for the two-point function of every scalar Hermitian field, including the
massless case. It is, moreover, shown to be weaker than locality and independent of the other
Wightman axioms. Unfortunately, essential locality turns out to be unstable under limits. In order to
indicate the possibility that there are essentially local fields which do not fall into Jaffe’s class and
the commutator of which is concentrated in the closed light cone, Jaffe’s concept of strict
localizability is generalized. As a by-product it is indicated that local fields (in the generalized sense)

may have extreme high energy behavior.

1. INTRODUCTION

There are good reasons! to expect that certain phy-
sically relevant field theories must be formulated on
test spaces of entire functions, i.e., the field operators
are nonlocalizable in the sense of Jaffe.? As nobody was
able to give a consistent definition of support for gen-
eralized functions on such test spaces til now, the stan-
dard formulation of microcausality, ® also called local-
ity, has no meaning in that case. As a conseguence,
most of the important achievements of Wightman field
theory such as Haag—Ruelle scattering, PCT, spin, and
statistics do not a p¥iori apply to the nonlocalizable
case.

In a recent paper? we suggested a new attempt of cir-
cumventing this problem, which already proved suc-
cessful for a derivation of the Haag—Ruelle—Hepp scat-
tering formalism.® As a substitute for the axiom of lo-
cality we introduced an axiom of “essential locality”
which demands some local continuity property of the
field commutator on the light cone (see Sec. 2 of the
present paper).

Independently Constantinescu and Taylor® introduced
an “ovder of extension of the commulaloy byackel oul-
side the light cone” for the nonlocalizable case. The
main purpose of the present paper is to compare this
concept with the notion of essential locality.

In Sec. 2 we briefly review the notion of essential lo-
cality and stress its Lorentz invariance. In Sec. 3 we
show that essential locality is no restriction on the two-
point function of a scalar field. The mathematical con-
nection between essential locality and the above men-
tioned order of extension will be clarified in Sec. 4. In
Sec. 5 we construct fields, the commutator bracket of
which has finite order ¥ of extension outside the light
cone but does not decrease as fast as predicted by
Constantinescu and Taylor. In order to indicate the pos-
sibility that even for finite order ¥ the field commutator
may not extend outside the light cone, we extend Jaffe’s
definition of strict localizability in Sec. 6 and construct
corresponding ¢-number examples. Section 7, finally,
is devoted to a short discussion of the results.

In order to keep the amount of technical considerations
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at a minimum, we shall not work out the most general
versions of our results.

2, ESSENTIAL LOCALITY REVIEWED

For convenience we use the well-known Gel'fand
spaces’

SS(R"):SBp-“an’ By=By=---=B,=s, 0<s<1,
We adopt the usual notation:
n C\1/2 1
”X”: <Zl (XJ)2> , X= (X s "0y Xn)?
i
Z'={a=(at, - -, a" : &’ nonnegative integer}
n o
la| =2, o/, al=a'l...a™, X"= 1),
= i1
3\ a\*"
=) ) et

UMy ={x e R":llx = x'll< € for at least one x'c M}.

In order to stress the Lorentz invariance of essential
locality (see Definition 3 below), we use the modified

Definition 1: Let M be a closed subset of R"and S a
subset of S°(R"). Then S is called locally bounded on M
in S°(R™ iff there is a positive constant A such that for
every nonnegative integer N

sup sup sup A7 a2 {Ix[[M @ (x) | <o,
vES XCH acZy

In the original version of Definition 1 we used
Supycu, ) instead of supyc y with suitable € .- 0 depend-
ing on S. Since, in the present paper, we restrict to
s <1 both versions are equivalent:

Lemma 1: Let M be some subset of R" and A, C, Cy, ++ -
some sequence of positive constants. Moreover, let the
entire function ¢ over R fulfil the inequalities:

sup sup A o |xIIM @@ (X)[<Cy, Nez,.
XEM acZh

Then there is a sequence of positive constants
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B, Dy, Dy, -+ independent of ¢ such that also

sup sup (24)7"*! o= |Ix|I¥ | o) (x) |
XCEUM) a CZT

<Dy eXp(B€1 /(1-s))
holds for all Ne Z, and € >0,
Proof: Since ¢ is entire, we may write

1

P +x")= L B'X fo(x).

Hence for x € M and X' < R” with Ix’lI< € we have
I +x"I1" @ (x + x|

<(1+e) Z E—(1+H><l| Y@y |

sB
< 2N (CO+CN)(1+€)”Bsup%—‘—(4EA)'B'(2A)'°"013°‘
czn Bl

which directly implies the statement of Lemma 1. =

The notion of essential locality is based on the
following

Definition 2. Let M be a closed subset of R” and F a
generalized function on S°(R"). Then, for nonnegative
sy <s, F is called locally continuous on M with respect
to SHR™ iff sup,cs|F(@)| is finite for every SC S*(R")
that is locally bounded on M in SSo(R").

Now we can formulate “essential locality”:

Definilion 3: Let A{x) be a scalar Hermitian quantum
field defined on the dense invariant subset D of the
Hilbert space of states // which satisfies all the Wight-
man axioms, ®
S(RY is substituted by the Gel’fand space SR, s= 0.
Then A(x) is called essenlially local, iff for arbitrary
®, ¥ D the expectation value of the field commutator
(@ I[A(x), A(y)]1T), uniquely defined* as a generalized
function over S*(R%), is locally continuous on V, ={(x, v)
€ R®:x ~y ¢ V} with respect to S(R?).

Nonlocalizable power series of the (massive) free
field, for example, proved to be essentially local with
respect to every space SS(R*) on which they can be de-
fined at all,®

As a by-product, Lemma 1 exhibits a basic difficulty
connected with local continuity: Let Fy, F,, -+ be a se-
quence of generalized functions on S°(R"), weakly con-
vergent to F in S°(R")’. If all the F; are locally continu-
ous on the same closed subset M of R", then also F is
so as long as s = 1. For s <1 this does not hold in gen-
eral, as can be immediately seen by choosing F; to be
the characteristic function of U;(0) € R", Then, by
Lemma 1, all F; are locally continuous on {0} with re-
spect to S*(R"), but F is not. Even worse, since every
generalized function over S(R") that is locally continu-
ous on {0} with respect to S(R") can be approximated by
finite linear combinations of derivatives of the & func-
tion, ® F may be also represented as a limit of Schwartz
distributions with supports equal to {0}, This indicates

that proofs of essential locality for nonlocalizable fields

will by no means be trivial.
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except locality, where the Schwartz space

3. ESSENTIAL LOCALITY OF ARBITRARY
TWO-POINT FUNCTIONS

Given a strictly localizable scalar field A(x), then the
vacuum expectation value of the field commutator
(QI[A(x), A(y)]1) is well known to vanish in the region
{(x - )% <0, whether A(x) fulfils locality or not. In this
section we shall see that a similar result holds for the
nonlocalizable case as well,

Let us introduce the notation
G ={p c R*: min{ |p°[, llpll} < €}

for € > 0 and denote by §(G,) the set{w c S(R*) : supp ¢
C G} endowed with the trace topology relative to §(R%).
Then the essential point is to realize the following
fact:

Lemma 2: There is a partition of the unity {%,} /) (R%)
and there are proper Lorentz transformations A, for
which

200) =Dk (A7) S(85'p)
converges in § (G,) and depends continuously on ¢
e S(RY.

Proof: For every p € R* one may choose a proper

Lorentz transformation A, with

(D) App € Gy,

(1) (A% <1601 +iplD,

(iii) Ayq € G, if lIp — gll< 1621 +Ip D,

By standarNd techniques one may construct a partition of
the unity {%,} fulfilling the conditions

llp - gll< 1672(1 +lIpI)~ for p, g € suppk,

and

Y, sup |D¢R,(p)

r nslplicns

|<Py(n) fornez,

acZ% where the P, are suitable polynomials. Thus, if
we choose an arbitrary sequence of vectors p, ¢ supp’,
and for every p, a proper Lorentz transformation A,
=A, according to (i)—(iii), then Sk (AS1p)G(ALp) has all
required properties. =

As a direct consequence we have the following:

Covollary 1: A Lorentz invariant Schwartz distribu-
tion F is tempered if F& $(Gy)'.

Finally, we can prove:

Theovem 1: Every Lorentz invariant odd generalized
function F on S%(R*), 0<s <1, is locally continuous on
the closed light cone V with respect to S*(R*).

Proof: We essentially use the technique of Ref. 8. Let
us first consider the case s = 0. Since supp F < V we may
multiply F(p) by exp[— (1 +p»'/?*] and thus, by
Corollary 1, get a tempered distribution. Therefore,
there are N’ C'c Z, with WFi5,<C’, where

1BlIg.= sup  max {(1+lpII*)
pcU (V) lalsN?
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x| D2 (§(p) exp[(1+p3)'/ @]}
(== possible).

Moreover, there is a N”c Z, such that

IS < Colidllyn sup _ exp[(1+p?Ht/ @]
PEUY (V) Isuppd

for some suitable finite constant C”, where

%)

q;(tn(p)‘

l@lly» = max max (1+lpl
PERE lal<N"

for ¢ S(RY).
Hence, if we choose a partition of the unity {B <D (RY
with supp i, € (v - 1, ¥ + 1), h{) = hy(t - ) and define
tempered Schwartz distributions

E, 4(0) = 03 1 0D F(p)
for either k,v-1cZ, or k=7=0, we have
IE, o)y < C(1 + k") (max{1, » - 1)

X exp[(r +2)1 /@] (3.1)

for suitable N, C e Z, not depending on 7, k. Keeping in
mind that the F, 'k(x), being tempered Lorentz-invariant
odd distributions, have supports contained in I7, choose
a multiplier g=()4(R% fulfilling the conditions
1 forxeV
gl =
0 for x & U,(V),

sup max (Dﬁg(x)(<°°.
xERY lal <2N

Introducing the notation

G(p) = (20?2 [ ap (0O I(pNEP - ",

we then get
| [axF(x)u(x) |
S ILE gltylBolly + 25 11E, 4o llgllB M1, (3.2)
r=1
% lly = max [dx|(1+a)[x* g1
lo | =N
(Axaa%_,'“’ : +8§, Dan%- a%" ag" 32).
With the definition
B, ={pcSRY: max max e'*'y ™
xCUL(F) acz
X (1 + [1x|1¥*5) | D2 () | < 1}
we have for suitable constants A, C, 4
sup ”&k”N = ce,N(€A)2k"2&~ (3.3)
Y B¢

Thus, choosing € sufficiently small and arranging k()
such that

A8 o kr) <1 +1,.1/(25)’
we conclude with (3.1) and (3. 2) that

sup | [ dx F(x)(x) | < . (3.4)

vEBe
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Summarizing: For small € >0 [not depending on F(x))
(3. 4) holds for arbitrary F(x) fulfilling the requirements
of Theorem 1. Since, for arbitrary x>0, also F{Ax)
fulfills these requirements if F(x) does, (3.4) must be
valid for arbitrary € > 0. Hence, by Lemma 1, F(x) is
essentially local on V.

For s =0 we have to modify the above proof in the
following way. Equation (3.1) has to be replaced by

LF, a0 lyer) < Cr wey (1 + ) (max{1, » ~ 1}, (3.1

Equation (3.2) still holds, with the only modification that
N depends on ¥ now, This » dependence makes us sub-
stitute for B, an arbitrary set S that is locally bounded
on Vin S*(R%); i. e., there are numbers Csy ), As such
that

suguzﬁkuw, <Cs yoA%. (3.3")

s

Thus, choosing k=%(7) of sufficiently rapid increase
for » -, we see that

sup | [ dx F(x)p(x) | < (3.49
Ve §

for every set S that is locally bounded on V in SS(RY);
i.e., F(x) is locally continuous on V with respect to
S°(R% in the case s=0, too. =

Theorem 1 shows that essential locality does not im-
pose any restriction on the two-point function of a scalar
field A(x) on SS(RY), 0<s <1. A direct consequence is
essential locality of arbitrary generalized free fields
(compare Ref. 6). We conclude this section with the re-
mark that Theorem 1 in connection with Ref. 8 indi-
cates a way how to overcome Constantinescu and
Taylor’s difficulties concerning power series of the
massless free field.

4. CONSTANTINESCU AND TAYLOR’S
CLASSIFICATION OF EXTENSION OF THE
COMMUTATOR OF A NONLOCALIZABLE FIELD
OUTSIDE THE LIGHT CONE

Constantinescu and Taylor® introduced spaces T,.i(s)
of entire functions over R*™" which, by Lemma 1, may
be described as follows:

For M C R" define the topological vector space Sj; of
entire functions over R" by

(i) ¥ €Sj, iff there is a positive constant A such that

lll4:¥ =sup sup A~ a==IxI1¥ | @@ (x) |
XCM aezg
is finite for every Ne Z,.
(ii) ¢, ~ ¢ in the topology of Sj, iff there is a positive
constant A such that

llor— @llf:¥ ~ 0 for every Ne Z,.

LN -
Then T, ;(s) =8%¢ crtny v

Given a field A(x) as in Definition 3, Constantinescu
and Taylor® defined the supremum of all ¥> 1 such that
for arbitrary n-1e€ Z, and 1 <j<n the generalized
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function®’
Cra, i1, <+, &)
=(QA) < A DIAR), Al ) JAGeg) -
XA(X ) ’Q>,
£ =x; =X, for 1] <y,

can be extended from S'(R*") to T, ;(1~1/y) as the
ovder of exiension of lhe commulaloy brackel oulside
the light cone,

In order to compare this classification with our defi-
nition of essential locality, let us first recall the follow-
ing technical result:

Lemma 3: Let B be a positive constant and s < (0, 1).
Then there is a nontrivial nonnegative entire function
¥ over R' and a positive constant A such that

sup sup A-j]--sj exp(B’i‘1/(1'3’)|w§j)(l)‘ < o0,
tcRl jez,

Proof: See Ref, 7, p.192. =

(4.1

Covollavy 2: Let M be a closed subset of R" and s
€ (0,1). Then S’(R") is dense in Sj;. Hence a generalized
function F on S°(R™ is locally continuous on M with re-
spect to SY(R" iff it can be extended to Sj.

Proof: Without loss of generality we assume 0 M.
Let ¢ ¢ Sj;. Then there is a positive constant A such
that

loll:¥ is finite for every Ne Z..
Hence, by Lemma 1, there are positive constants
B; D(b Dl: ¢+« with
sup (24)7 o= (Ix IV |9 (x) |
aczZ?
LA
<DNeXp<BZ_J iXJ |1/(1-S)>u
=1
Choosing ¥ according to Lemma 3 and defining

hr(x) =11 (f};dld)s(xj— 1)) for R >0,
j=1 -

we get ig@ € S(R™ and, for A’ big enough,

Lim (1= Rp)oll ¥ =0 for Nc Z,.

R
Since ¢ ¢ S; was arbitrary, this directly implies the
statements of Corollary 2. »

Corollary 3: Let A(x) be a scalar Hermitian field as
in Definition 3, which is not neccessarily essentially
local, however. Suppose D to be the set of all vectors
of the form

N
2 [dx @ (DA(x) < - AR,
n=0

where ¢, cS*(R*), Nc Z,. Then A(Y) is essentially lo-
cal iff Cpuy ;(4, <+ -, &) can be extended to T,y ;(s) for
every ne Z,, 1sj<n.

Proof: With our special choice for D the field A(x) is
essentially local ifft

QA - Al DA, Alvsa) ]
XA jug) + » o Al ) [Q} (n,jcZz, 1<j<n)
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is locally continuous on {X € R*"™):x; — x,,) ¢ V} with
respect to SY(R*™"?), This holds iff C,,,; is locally con-
tinuous on{f e R*: £ ¢ V} with respect to SS(R*"). Final-
ly, by Corollary 2, the latter holds iff C,,; ; can be ex-

tended to T,.; ;(s). =

Corollary 3 means that the Constantinescu—Taylor
order is > (1~ s)™! iff the field A(x) on S*(RY) is essen-
tially local. Hence the interpretation of this order given
by Constantinescu and Taylor also applies to essential
locality. For finite order y they claim that the field
commutator neccessarily extends outside the light cone
and that optimal bounds on spacelike cones are given by
Cexp(—Allxl”), where C, A are suitable positive con-
stants depending on the cone. This interpretation is
wrong, as will be shown in the subsequent section.

5. NONLOCAL TEMPERED FIELDS

Let A,(x) be the scalar Hermitian free field for mass
m 0. Let# be its Fock space and © the no-particle
state. Consider the tempered field

A () = A () + [hx A% J(v),
Wp) =), & OB
on the dense invariant domain D« 4 consisting of all

vectors ¢ of the form
N

=2, [dvAx) - Alx) 9,0,

n=l

where ¢, S(RY), N¢ Z,. If there are positive con-

stants C, A with
0~ 5(1) = Cexp(=Alt|Y®), e RY, (5.1

for some s, ¢ (0, 1), then we can easily prove that 4,(v),
while fulfilling all the other Wightman axioms, is not
local.

To this end let us check the expectation value
E('\‘lr '\‘2) = <(I)fh {Ag ('\’1)7 Ag ('\AZ) l \ Q> ¢ ~S (RB) ’,

where ®; is the two-particle state corresponding to the
wavefunction f,(py, Ps) = wy, wp,/ (P1, P2) . J(R®). An ele-
mentary calculation using Wick's theorem shows that

R(v) = f dvy dyy E(xy, Xp)@(xy — v)i(xy)

= const&fpm dpy dpy S *(py, Ps) [ dq 8(q% = m®)e(q")
775

X 5((q = p)A3(q + PGy = O Tps + ) explivipy — )|

for @, &< S(RY and v - R* (* denotes the complex con-
jugate). By (5.1) and since

(b= q)% ] 200" = llpDllall = 2mm?

for p, ¢ on the (positive) mass shell, %(y) is an entire
function of order'! «(1~s,)". Assume A,(x) to be local.
Then, since for arbitrary ¢, </ (R, f < [ (R®) the en-
tire function %(v) must vanish for all v outside some suf-
ficiently large neighborhood of the light cone (depending
on ¢ and ¥), it must be identically zero. But, since

& 0, this cannot hold for all @,y cJ(RY). Hence the
assumption is wrong; A,(v) is not local

A,(x) is not even essentially local with respect to

J. Bimmerstede and W, Lucke 1206



S*RY), if s >s,, at least for s, <%, This may be demon-
strated as follows: Assume A,(x) to be essentially local.
Taking

o) =p(=x) =11 yalx?), B>0,
=0

with not neccessarily positive 5 fulfilling (4.1), we
get bounds of the form C exp(— Aliyit/ 49 for k(y) on
spacelike cones. Hence, again, we can conclude'? that
k is identically zero. Since the set of all ¢, 0<B, ful-
filling (4.1) is dense in §(R!), this leads to the same
contradiction as above.

Given s, €(0, 1), there is (Ref. 7, p.192) an entire
function

©

gty=2, c (=)
r=(
of order <sj* fulfilling (5.1). For such & the nonlocal
tempered field A,(x) is the N~ limit of the local tem-
pered fields

N
Ao(x) +E ¢, J :A% s {x)
r=(

in the topology of S*(R%)’ for s_< (0, s,/2). This also
shows that A, (x) is essentially local with respect to
$*(R"). Thus, by Corollary 3, the order ¥ of A,(x) ful-
fills the inequality

(I1-s)tzy=2(1-s/2)" .

Assume the interpretation of ¥ given by Constantinescu
and Taylor to be correct. Then inequalities of the form

KQ |A(x1) s [A(xf)’A(xid)] - Alx,) ‘ ) |
<Cj,,, eXp(—Aij—x,-.l”r)

hold for j <# in all points {xy, « ., X, X;44, - » +, ¥,) Which
are totally spacelike® simultaneously with

(X1, "+ * s X4y X4y Xjugy « =+, X,). Since ¥ >1, a well-known
result by Borchers and Pohlmeyer!® directly implies
locality of A,(x). This contradiction shows that the bound
for the extension of the field commutator outside the
light cone predicted by Constantinescu and Taylor—
which would be extremely powerful—unfortunately does
not hold in general.

6. STRICTLY LOCALIZABLE GENERALIZED
FUNCTIONS

Although it is obvious that finiteness of the order ¥
of a field A(x) on a Jaffe space® C, implies definite ex-
tension of the field commutator outside the light cone,
we doubt whether this holds for all fields on S*(R%),
0=ss<1, as well. Unfortunately, one does not have an
interpretation of “extension of the commutator bracket
outside the light cone” in terms of familiar notions for
arbitrary nonlocalizable fields. This problem does not
arise, however, if the “nonlocalizable” field A(x) on
S*R*%, 0<s<1, has an extension to a field A'(x) on
some larger test space C which allows the definition of
“support” of a generalized function on C. Definite ex~
tension of [A(x),A(y)] outside V; would then be naturally
interpreted as supp [A(x), A(y)]Z V.

Therefore, we shall introduce a generalization of
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Jaffe’s definition of strict localizability. Presumably
the extended class of strictly localizable fields contains
fields with finite order ¥ and supplA(x), A(y)]C V,. Asa
preliminary step in this direction we shall give corre-
sponding ¢c-number examples in Lemma 5.

In the spirit of Jaffe? a field theory is called strictly
localizable, if the field operators are defined on a test
space ( containing “sufficiently many” test functions
with compact support. We call such spaces “local” and
generalized functions on such spaces strictly
localizable:

Definition 4: Let(C be a test space over R". ( is
called local iff the following conditions are fulfilled:

(1) C{U ;) is* contained in the closed linear hull of
U,;crCU;) for every family of open sets J;C R", jel
( an arbitrary index set).

(i) C()) is a dense subset of L%()) for every open sub-
set  CR",

The characterization of these spaces as “local” may
be justified by the following:

Remavks: (1) As usual, the support of a generalized
function F onC can be defined as the complement of the
set of all points having a neighborhood, where F=0,

{2) Then F(¢)=0 for every ¢ e with supp ¢ N supp F

(3) F is completely known, if it is known on some
neighborhood of every point x € supp F.

Moreover, local test spaces allow the following:

Definition 5: Let C,, C, be test spaces over R" and
assume C, to be local. Let (J be an open subset of R”,
and let//] be a mapping from C,({)) into C,. Then we say
that//f can be extended to a mapping from {Fc({: supp F
C(} into CJ iff there is a linear continuous mapping /i’
from C, into C; with

faxtm oo, = [dxey/h ‘e,

for all ¢, cC{(0), ¢,C,.
The extension of /i is defined by
Jax(mFY(0ex)

= [axF()/M'e(x) for 9 cC,.

Remavrk: Definition 5 is allowed since, by condition
(ii) of Definition 4, /h '@,(x) is unique for x (/.

A useful criterion for condition (i) of Definition 4 is
given by

Lemma 4: Let C be a test space over R fulfilling the
following conditions:

.. (i) for every pair of precompact open sets )y, U, with
0, C0;C R" there is a multiplier £ in C with

1 for x e(,
E(x)=
0 for x €Uy
(ii) for every open set UC R", (({()N /[ is dense in
C(()). Then condition (i) of Definition 4 is fulfilled.
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Proof: See Appendix A. =

The Gel’fand spaces’ S, s >1, the Schwartz spaces®®
S, 1) and the Jaffe spaces® (, are well-known examples
for local test spaces. The class of local test spaces as
specified by Definition 4 is considerably larger, how-
ever. This may be illustrated by the following example:
For s €(0,1), ne Z,, let C*(R") be the set of all C*-
functions ¢ fulfilling

lolly ca= sup  sup Ao =¥ [@@®)(y) |
«,8c2z7 XCR"
18] =N ixllzelel
for arbitrary positive A, €, N, endowed with the natural
topology given by the family of norms l@lly . 4.

Covrollary 4: The test space C5(R"), 0<s <1, is local,
The test spaces [J(R") and S*!(R", 0<s,<s, are con-
tained in C °(R" and their topology is finer than the trace
topology relative to C S(R").

Proof: See Appendix B, =

The spaces C (R%) are well suited for field theory,
since all the usual operations on generalized functions
on C ® such as partial differentiation, multiplication with
polynomials, coordinate transformations, etc., are de-
fined by Definition 5 in the familiar way. Operator pro-
ducts A(xy) -+ -A(x,), finally, have a natural definition
on C°(RY &, - - .©,C*(RY (compare Ref. 4, Appendix).

The motivation for introducing these spaces is given
by the following:

Lemma 5: Let s € (%, 1). Then there is a generalized
function F on C *(R*) with supp F< V, which cannot be
extended to a generalized function on S*(R*) and the
Fourier transform of which is an entire function which
cannot be bounded over R* by Cexplip!*/* for any C > 0.

Proof: See Appendix C. =

7. CONCLUSIONS

We have seen that essential locality is a Lorentz-
invariant concept and that it does not impose any re-
striction on the two-point function of a scalar Hermitian
field, even in the massless case. The Constantinescu—
Taylor order ¥ of “extension of the commutator bracket
outside the light cone” was briefly reviewed and proved
(under some mild restriction) to be = 1/(1 - s) iff the

field is essentially local with respect to S°(&%), s < (0, 1).

This caused our special interest in the Constantinescu—
Taylor interpretation of 7.

For arbitrary s,c (0, z] we constructed nonlocal tem-
pered fields which are not even essentially local with
respect to any S°(R%) with s > Sy, but which are essen-
tially local and limits of local tempered fields with re-
spect to every S*(RY), s_< (0, s,/2). These examples
were used to disprove the bound for the extension of the
commutator bracket outside the light cone predicted by
Constantinescu and Taylor. In addition, these examples
show for s >0

(i) Even for strictly localizable fields locality is a
definitely stronger condition than essential locality with
respect to some S°(R*), s <i. Therefore, we believe
the extension of the Haag—Ruelle—Hepp scattering the-
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ory to essentially local fields, given in Ref. 4, to be
really nontrivial.

(ii) Essential locality, just as locality in the local-
izable case, is independent of the other Wightman
axioms.

(iil) Unfortunately, essential locality is not stable un-
der limits: Even limits of local fields need not be essen~
tially local with respect to S*(RY).

Finally, we presented a generalization of Jaffe’s con-
cept of strict localizability in order to indicate the pos-
sibility that even for finite order ¥ the field commutator
may not extend outside the light cone, as indicated by
c-number examples. This generalization does not seem
to exclude the possibility that local fields, strictly lo-
calizable in the generalized sense, may increase strong-
er than exponentially in momentum space.

We believe that essential locality, despite its non-
stability under limits, is a useful concept. This has
been demonstrated in Ref. 4, and we hope to be able to
prove analyticity properties of the S matrix for essen-
tially local fields in a forthcoming paper.

APPENDIX A: PROOF OF LEMMA 4

By condition (ii) of the lemma we may assume without
loss of generality the (J; to be precompact and / to be
finite, say I={1,-:-,N}, N—1c Z,. We prove Lemma
4 for N=2 only. For arbitrary N the statement follows
by simple induction, then.

Let ¢ cC (/1Y (J,). Then there is a precompact open
set () ¢ R" with () ©(J, and supp ¢ < (J; U (). By condition
(i) of the lemma we may choose a multiplier » in C (R%
with supp® = (J, and #(x) =1 for x ¢ (/. With the
definitions

o (0 =[1= 2 (), @,(x) =k eX)

we then have ¢ = ¢; + ¢, and ; eC({U,), j=1,2. Hence
every ¢ € C{(J;U (J,) is in the linear hull of C ()Y C({U,).

APPENDIX B: PROOF OF COROLLARY 4

We only have to prove that C (R") is local, because the
second part of the corollary is obvious. As /() is con-
tained in C%(() and dense in L%{(J) for every open set
() R", condition (ii) of Definition 4 is fulfilled. To
prove that condition (i) of the definition is fulfilled as
well, we use Lemma 4. Since we can use suitable multi-
pliers in/) € C* in order to fulfil condition (i) of Lemma
4, we just have to prove that condition (ii) of Lemma 4
holds:

Choose a function d(x) ¢ S***/2(R™ with

1 for lIxll <%
400 = 0 for {Ixll>1
and define d,(x) =d(x/¥) for positive » ¢ Z,. These func-
tions d, fulfill the inequality
sup sup sup Al @@ (y) |

ez, o,B8E2Z7 XER"
T *oTlBIe Y wWizelal

< sup sup AN (e|a ) ™ |d@™®(x) | <o
o, 8CZ7 XCRT
fBl<x
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for arbitrary A, €, N> 0. Now, let ¢ =cC*(R"). Then we
have
sup lld,olly ¢ v <

r-l€z,
for arbitrary A, €, N> 0. Since, on the other hand, every
derivative of d,{x)¢(x) converges uniformly to that of
¢(x) on every compact subset of R" for » -, we con-
clude: 4,(x)¢(x)7=+®(x) in the topology of  %((/) for every
@ocC%(0). Since d, c/)(R", this means that condition
(ii) of Lemma 4 is fulfilled.

APPENDIX C: PROOF OF LEMMA 5

Let us define the entire function (7 € RY)

o

JAUE . [1 4572572 exp(2iT) ]

J

Il
s

c;(—iT)% exp(2i5T).
0

.
u

Since there are positive C, A such that'®
le;| < CcAlj2s

the entire function 75(7') is the Fourier transform of the
generalized function

F) =25 ¢,6%(t - 2))
i=0

on C5(RY). Therefore,

Fi0 =2 ¢,69)(x - 2))8(x)

i=0

fulfills all the requirements of Lemma 5 if f,(7) cannot
be extended to a generalized function on S*(R'). Choose
a nonnegative function @ /) (R?) with

1 for |7|<%

(Z(T):
0 for |T|>1

and define
© 2
G\ (7) = GO*(T - m’”( I (12t ”2>

for ne Z,, x>0. Clearly,'® 32, @, , converges in S(RY)
for every A > 0. Therefore, it is sufficient to prove that
2 JdTf1) @, p(7) (c1)

does not converge for some X > 0:
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For Te R! with cos27> 0 we have the inequality
|70 = Fsnm) | =| [ dp 7o) |

:‘ f,,:,- dpJ?s(D) Z/ [1 +j"2572 exp(ZiT) ]_1

"

X 2§72S(T +iT2) exp(2i7) |

<|T—nrl max  [[7m |+|Fmm) - 7o) |]

{p=nt| €|Tanr|
X 4(1+78)2, j-°,
i=1

For sufficiently large 2 >0, consequently, AP T =l
<1 implies |fy(T) = fonm) |<3fnn). Thus for sufficiently
large X > 0 there are positive constants C, A with

Re [dT7 (1)@, A7) > 3Fs(nm) [ dT@, \(T) > 5F(nm)xn

I [1-j725(T/N2)2~ C exp(Ant /)

i=1

X min
TCR
rllTonri <l /2

and (C1) does not converge.
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The separating topology for the Lorentz group L
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Some properties of the Lorentz group L are presented if it is endowed with a topology induced by
one of the topologies for the Minkowski space M, proposed by E. C. Zeeman.

1. PRELIMINARIES

Let M denote Minkowski space, the four-dimensional
real vector space R%, provided with the indefinite qua-

dratic form
Qx) = x5~ #} — x5 = x5,

where x =(x,, %, X,, %;) € M. The vectors x of M are
called timelike if Q@(x) >0, lightlike (or isolropic) if
Q(x)=0, and spacelike if @(x) <0,

L is the full Lorentz group (all linear maps leaving
@ invariant), L' is the orthochronous Lorentz group that
is the subgroup of L whose elements preserve the sign
of the first coordinate. L] is the subgroup of L' whose
elements / have the property det/ = +1.

Using the canonical basis of R* we introduce the parity
p by

P=(P,~j), 051', j$3,
Poe=1, py==1, 1si<3,

and p;, =0 for all i#j. We shall also use the (ime
reversal | =-p,

Notice that L/L.= V, where V, denotes Klein's four-
group. By O; we mean the centralizer of p in L, that is
to say the subgroup of L, whose elements # have the
property prp~'=». The elements of 0; are called pure
rolations.

Z is the subgroup of L whose elements z have the
form

cosha sinhe 0 0
sinha cosha 0 0O
0 0 10
0 0 01

Il

We introduce furthermore HS, being that subset of L]
whose elements 4 have the property php' =h™. Notice
that #="h (*k is the transposed of %); & is called hyper-
bolic scvew. L has no proper invariant subgroups, cf.
Ref. 1.

Let SL{(2, C) be the group of unimodular 2 X2 matrices
over the complex numbers. As is known, there is a
surjective homomorphism ¢ which induces an
isomorphism

SL(2,C)/Z,=L;

where Z, is the set
{ 1 0)_ (-1 0)}
(0 1 0 -1
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The homomorphism ¢ can be described in the following
way (cf. Ref. 2): Let x =(x,, x,, %3, %;) € R* and let ¥ de-
note the Hermitian matrix

Xg +X;, Xy —1iXg

X, +iXg Xy =%, € M(2,0).

Consider the bijection f:R*— M(2,C), given by f(x)=%.
Letle L} and s=¢"'()e SL(2,C). We have the relation
I¥=sXs*, where ¥—IX is a Hermitian map.

Using matrix language, we may write

Yo F ¥ Vo=iv, a B\ fxot+ x, X,~ix,

™ R
(=B

Vo +tivy Vo= ) Vv Of\x,+ix, x5~ x;

where v =1Ix=(¥,, ¥, ¥z, ¥5) and s :<3 f:)

We shall also use the group G, that is the group
generated by L, the group T of translations of M and
the group of multiplications by a positive scalar of the
vectors of M. G'is the subgroup of G that we obtain by
considering L' instead of L.

There is a partial order << on M given by x<< ¥ if and
only if @(y —x) >0 and x, <y,. Another partial order
<on M is given by x <y if and only if @(y —x)> 0 and
Xo< ¥o. We still need the relation <-, given on M by x
<-v if and only if Q(y ~x)=0 and x, < y,. We introduce
furthermore the sets:

Cx)=1{v|Q(y - ) =0},
S ={y]@y - x) <0},
1(x)={v|Qy -x) >0},
r(x) ={y|x<y},
r(x)={y|y«<z}

C is the group of bijections of M, preserving the rela-
tion <«

Zeeman® proved that C and G' coincide. Zeeman’s
theorem has been generalized in several ways, cf.
Refs. 4-9.

2. THE SEPARATING TOPOLOGY FOR
MINKOWSKI| SPACE M

Usually M is endowed with the Euclidean topology, but
one can argue (Zeeman®'°) that this is objectionable for
physical reasons. On the other hand, it is impossible
to define a topology for M by means of the indefinite
quadratic form @ in a way similar to the Euclidean
topology by means of the definite quadratic form. In
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Ref. 10 Zeeman has proposed several non-Euclidean
topologies for M related to the Lorentz group L.
Nanda!*~!® investigated them and added some more of
this kind of topologies. All these topologies have the
property that the corresponding group of autohomeomor-
phisms of M coincides with G and for that reason they
seem to be physically significant. Unfortunately, they
are very complicated from a topological point of view;
for instance, they fail to satisfy the normal property and
hence they are not metrizable. In this section we shall
deal with that one of the topologies, proposed by
Zeeman, that seems to be the most suitable for physics,
cf. Ref. 9. We call it the separating topology. Similar
topologies are also proposed by Cole™ and Cel’nik.*®

Let d(x, v) denote the Euclidean metric
d(x,y) ={(x, - ¥ol? H(xy = y1)? + (5 = 9,)® + (x5 - L i

Given x& M and € >0, let Ni(x) denote the Euclidean e-
neighbourhood of x, given by

Ni(x) ={v]alx,v) <e}.
We introduce
Ni(x)= NAx)n(CO\ xD*, xeM
(by V* we mean the complement of a set V).

Definilion: The separating topology for M is the topo-
logy, given by the basis of open sets Ni(x), xc M.

We use the notations M, for M with the separating
topology and M for M with the Euclidean topology.

Remark: It is also possible to define our topology by
using only the relations «, <, and <., That offers the
possibility of introducing the separating topology in
more general causal spaces, cf. Refs, 9, 16.

Let x, v, z€ M; v<< x<« z and let us write
oy, H=I'(y)nr(z)n (C(x)\{x})* .

Clearly the topology for M with basic open sets O,(y, z)
is equivalent with the topology with basic open sets
Ni(x). Notice that M_ is a Hausdorff space; it satisfies
the first axiom of countability and it is a separable space
but it does not have a countable basis. However M,

is locally connected and pathwise connected it is not
locally compact. From a physical point of view it seems
to be interesting that on lightlike lines the discrete topo-
logy is induced and that on timelike lines and spacelike
hyperplanes the Euclidean topology is induced, cf.

Ref. 10.

Comparing M and M, we still note the following
properties:

(1) The set O is open in M, and not in My if and only
if for all x & O there is an ¢ >0 such that N5 (x)C O
and there is an x € O with the property (C(x)\{x})
N Ng{x) N O*# ¢ for all € >0.

(2) The subset X of M_ is compact in M, if and only if
X is compact in M, and all x< X are isolated in
XN C(x) (with respect to M,).

(3) The group of autohomeomorphisms of M_ is G.

For details we refer to Ref, 9.
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3. THE SEPARATING TOPOLOGY FOR
LORENTZ GROUP L

This is the main part of our paper; we shall investi-
gate the topology for L induced by the separating topol-
ogy for M. As is to be expected, M, induces a topology
for L, deviating from the usual Lie group topology, such
as we obtain by considering L as a six-dimensional
manifold in R.° There are several ways to topologize a
set of maps. In this section we shall deal with the topol~
ogy of pointwise convergence. See e.g., Ref. 17,

A. Introduction

For each x ¢ M, and for every open set OC M we
define

(x,0)={leL!|{Ixec O}

Let L denote L., endowed with the topology that has the
family of all sets (x, 0) as a subbasis, and let L, denote
L;, endowed with the topology, defined in a similar way
as for L, but coming from M instead of M. The
family of intersections of sets of the form (x,0) is a
basis for the topological space L., each number of this
basis having the form N7, (x;, 0;), where x,€ M, and O;
is open in M,. Notice that L is finer than L, for M, is
finer than M. As we shall show below, L is strictly
finer. Notice furthermore that L, is a Hausdorff space,
for M_ has that property.

It is also possible to describe our topology by means
of convergence of nets (see, e.g., Ref. 17, p. 77). To
that end one can define: The net of Lorentz transforma-
tions (1,) converges to 7 in L if and only if (/,x) con-
verges to Ix for all x€ M,. We shall say that a set 0C L,
is open if and only if every net (/,), converging to an
element / ¢ O, is eventually in O. Remark that, if the
net (1,) does not converge to ! in L, it does not con-
verge to ! in L_. As we shall show below, the converse
is also true if we restrict ourselves to timelike vectors.

B. Properties of L

L, is strictly finer than L. Example.

cosh l Sinh l 0 O 1
n n
sinh L cosh —1— 0 0 1
[ n n e
" 0 0 1 0 J° " o7
0 0 0 1 0

1 is the unit element of L. In L, we find that (/,) con-
verges to ! if n— w, but /,x=¢e'/"x, and therefore (7,
does not converge in L, for 1 {x)}¢ Ni{x), even for all n.
Also in the case of spacelike vectors, there are nets
converging in L, but not in L . The same sequence (/,)
as above, but applied to the spacelike vector y
=(1,1,0,1), gives us I,y £ N (y) for all n.

Theovem 1: L and L induce the same topology on
the subgroup O;.

Proof: It suffices to prove that a net of pure rotations
(), converging in L, also converges in L (with the
same limit). Suppose that (»,) converges to # in L.
Then we have for all x that eventually {(r x)}C Ni(rx).
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On the other hand, we know that all »,x are situated in
the same spacelike hyperplane through »x and therefore
{(r, 00 (Cox)\ frah=0

and, consequently,
{(r, ) }N NE(re) ={(7, %)} N NE(rx).

This means that (#,x) eventually belongs to N (rx). In
other words, (r»,) converges to » in L. 0

Covollary: L induces the same topology as L on
every compact subgroup of L,, because 0; is a maximal
compact subgroup of L, and consequently of L.

A semitopological group G is a topological space,
provided with a group structure such that the product
map GXG— G, given by (a, b)—ab, (a,bc G), is sepa-
rately continuous. See, e.g., Ref. 18.

Theorvem 2: L is a semitopological group.

Proof: Suppose that (I,) converges to 7, i.e., (I x)
converges to Ix, x€ M . In particular, if we consider
I’x instead of x, then (I, 7'x) converges to /l'x. There-
fore, for all neighborhoods O,;, of /!’ there is a neigh-
borhood O, of [ such that 0,1’ ©0,,,. On the other hand,
we know that the elements of L, are homeomorphisms
of M, and therefore it follows from (/,x) converges to
Ix that (1'1,x) converges to [l’Ix for all I’e L, i.e., for
all O0,, there is a neighborhood O, of ! such that /'O,

C O, 0

C. The main theorem

The definition of L, uses the action of L] on M and the
topology of M_. Now we want to give an intrinsic defini-
tion of L, by comparing it with L. In Sec. 1 we have
seen that L] is very close to SL(2,C).

Lemma 1: For timelike vectors x, (/,x) converges to
Ix in M if and only if {(/,x) converges to /x in M,.

Proof: Obviously, convergence in M implies con-
vergence in M. To prove the converse, we remark that
the nets, converging in Lz and not in L, are exactly
those having the property that there is an x such that
eventually

(l,x~Ix, l,x=Ix)=0 and [x#Ix,
i.e.,
(0 Yx=x, I,x~x)=0 and I, x#x.

It is sufficient to consider only one timelike vector. We
choose x’'={a,0,0,0) and note that it is possible to
transform all timelike vectors, situated on the same
hypersurface (x, x) =a?, into (a,0,0,0) by a suitable
Lorentz transformation {(a#0). The intersection of
{x|(x, x) = a®} and the light cone C(x’) consists only of the
vertex x’ of the cone. Therefore, the relations

(', x=x, 1", x—x)=0
and /™', x’ # x’ do not hold together. In other words,
(1, %) converges to Ix in M, implies that (, x) converges
to Ix in M. O

Let ¢ denote the surjective homomorphism of SL(2,C)
onto L. (as introduced in Sec. 1) and let B denote the
image under ¢ of the set of upper triangular matrices
of the form [¥ 2.,] with lal#1.

Lemma 2: Let x be an isotropic vector and let (I,) be
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a net of Lorentz transformations. Then (/, x) converges
to Ix in M, if and only if

(i) 1, x converges to Ix in My,
(ii) no /€ L exists such that eventually I l < B.

Proof: Similarly, as in the proof of Lemma 1, it
suffices to consider only one isotropic vector. We
choose x'=(1,1,0,0) and (compare Sec. 1) the relation

l}:sa?s*,

written out and applied to our situation, becomes
<yo+y1 yz—iy3> <a ﬁ)<2 0><& 7) (Ialz ay )
. = —_ =2 .

Y2 +i¥s Yo~ N y8/\0 0/\ Bb ay lyl?
Again, we have to exclude nets (7,) with the property
that eventually (I, x—x, {"™,x —x)=0and 1™ x* x.
The intersection of {x| (x,x)=0} and the light cone C(x’)

only consists of the line 1(1,1,0,0), A€ R, and therefore
we must look for 7, with 77, x"=x,x" (A, #1).

Let

@, B,
L=e\ 5/

then for such /, we have

‘QV‘2¢1’ av’?u:O’ &VYVZO’ |7v|2207

in other words,
|@,|2#1 and y,=0.

Consequently, the 2 X2 matrices in question correspond
with elements b€ B; i.e., ["'l,=b or [,=1b. The
Lorentz transformations, leaving invariant the other
one-dimensional isotropic subspaces, have the form
Ibi', where7 is a suitable Lorentz transformation.
Summarizing, we have to exclude /,, eventually satisfy-
ing the relation [, =1l ™ or 1 “*I"*1, = b. Now the proof
is complete. |

Covollary: L induces the discrete topology on the sub-
group Z and on its conjugates.

Pyoof: As is known the elements of ¢(z) have the

form [} %] with ¢ € R, being a subset of B.

]

Notice that in the case of Z there are two isotropic
eigenvectors, viz., (1, +1,0,0) but in the case of B
there is only the isotropic eigenvector (1,1,0,0).

Let C be the image under ¢ of the matrices [ ;] of
SL(2,C) with properties:

@ [al®={pl*=ly|*+]o[*=2,

(i) |al?-1B]%#1.

Lemma 3: Let x be a spacelike vector and let (/,) be
a net of Lorentz transformations. Then (/, x) converges
to /x in M, if and only if:

(i) (I, x) converges to Ix in My,
(ii) no 7€ L exists such that eventually / 777,/ e C.

Proof: Again we only need one spacelike vector to
start with and we choose x'=(0,qa,0,0), situated on the
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hypersurface (x,x)= ~a® (a+0). Similarly, as for
Lemma 2, we find

Yo+ V1 Y2—iVs a B\/a 0O\/a

Y2 +is Yo=9:1) \¥ 8/\0 —a/\B &
<1a|2—!B\2 ay - 6 >

T\ ay-B [yv[2-]el?/

Now the intersection of {x!(x, x) = —a®} and C(x’) is

situated in the hyperplane x, =a and therefore we have to
look for the elements of L., transforming (0, a,0,0) into

(v, a, vcosu, vsinu), where v+0,

’ b b ’
ay - g6 >
ly]2=15]?

<

This means that
<v+a ve"'“) |- |8}
ve wv-al® ay - Bo

v+a=allal®-|8[%,

or

v-a=ally[*~ 5],
ve™=a(d@y - BY),
and these relations are equivalent with the conditions:
W |af?= |82~ [y|*+]0]?=2,
(i) |al?-]8|221 (v20),
i) (o] ? = | 82 = 1) =@y - Bo |

but condition (iii) is superfluous for it is implied by (i)
and ab — By =1, Similarly, as for Lemma 2, it turns out
that in this case we must exclude the nets (I,) with the
property that eventually / 7",/ =¢, with c< C. 0

Now we are able to state:

Theovem: Let (I,) be a net of Lorentz transformations.
Then (/,) converges to 7 in L_ if and only if;

(i) (7,) converges to / in L,

(ii) no 7 € L exists such that eventually { /"',ic BUC
(B and C as defined above).

Proof: The theorem follows immediately from the
Lemmas 1, 2, and 3, O

Remavrks:

1. The theorem gives us an intrinsic definition of the
topology of L, by means of convergence of nets.

2. The topology of M, can be recovered from L.
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3. The Lorentz transformations that we have excluded
for convergence, are exactly those leaving not only
(x, x) invariant but also the intersections of the
hypersurfaces (x,x) =p and the light cones in the
points of contact. In Lemma 1 this intersection
only consists of one point and in Lemma 2 we found
the one-dimensional subvarieties.

4. Probably the condition |al?—|B8I%? = 1y|®+|5|>=2
has to do with the roots of the equation s¥s* =a%.

5. The set BUC has the property that Il BUC im-
plies 1™ € BUC and therefore L is a T,-group (see
Ref. 19, p. 27). As is known (cf. Ref. 1) L, has
no proper invariant subgroups and hence L is con~
nected (see Ref. 19, p. 28).

6. Probably L  has any representations that are not
representations of L; these representations might
lead to new invariants of physics. I did not succeed
in finding examples of these new representations
until now.
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Physical applications of multiplicative stochastic processes. .

Nonequilibrium entropy

Ronald Forrest Fox

School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332
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It is argued that the expression — K, Trace [<p(t)> In{p(¢)>], which appears in a stochastic
treatment of the dynamics of the density matrix is indeed the nonequilibrium entropy. The reasoning
involves consideration of the time evolution of the free energy for a relaxing magnetic moment in a
fluctuating magnetic environment. It is shown that the H theorem, and the monotonic decrease of
the free energy, as described by Pauli’s master equation can be generalized to the full density matrix,
at least for the case of magnetic relaxation, which requires the presence of off-diagonal density

matrix elements.

INTRODUCTION
In this paper, we shall argue that the expression

- Ky Tracel[(o(1)) In{p(?)) ] (1)

is indeed the entropy for nonequilibrium behavior in
quantum mechanical systems. Previously, it has been
shown that H(f), which is defined by the above expres-
sion without the ~ Kz, is a monotonically decreasing
function of time.! However, it was not argued that H(/)
leads directly to the entropy. Such a connection re-
quires a consideration of the physical quantity heat and
its relation with the above expression. In this paper, it
will be shown, in the special case of magnetic relaxa-
tion, how experimental verification of such a connection
could be achieved.

The contention that thermodynamics quantities can
have meaning in nonequilibrium situations requires
support. Here, we will explicitly write out expressions
for internal energy, entropy, and free energy which are
assumed to be valid for nonequilibrium situations. We
shall proceed by establishing the close relationship be-
tween these expressions and expressions found in the
earlier literature on this subject. It will be seen that
such expressions can be reasonably interpreted as non-
equilibrium thermodynamical quantities.

The mathematical context for these ideas is given by
the stochastic Schrodinger equation®

4L Call) = Mo Cor 1) + M (€, (1) (2)

in which Moo, = M¥., and M,,.(t) = M*.,({) and My, (1)
is a purely random Gaussian stochastic Hamiltonian.

The corresponding density matrix equation is

d . =
zi'zpaﬁ(t) = - Z"Lmﬂa IBlpa lal(t) - ZLotBa'B'(t)pd 'B'(t)7 (3)

in which pas(t) = CE()Ce(t), Lagaspr = OuaMggr ~ OggeMq -,
and Lz, 000 (8) = 84 «Mgge (£) = 85.M3 4. (1). The stochastic
average of (3) is

d .

Fﬁ <pa8(t)> == ZLaBa ’B'<pa 'B'(”) - RaBa 'B'<p0t 'B'(”), (4)
in which Ry, 5. is given by

Raﬁa B = Gad'QBBBB' + GBB'QGaa 6= ZQBB'OL fory (5)
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whegein Qupo g 1s determined by the second moments
of M, .(1),

(Mg (Mg 150 (S)) = 2Qu g 152 O(L = 5). (6)
The {py5(4)) in (4) has been used in
H(1) = Trace[{o())) In{p(!)) ] "N
to prove that
d
(—ITH(I) <0, (8)

which is an H theorem for quantum mechanical sys-
tems.! This H theorem differs from previously publish-
ed H theorems for quantum mechanical systems which
instead show that if, at /=0, (p,4(0)) has no off-diagonal
matrix elements, then H(/) < H(0) for /0.3 However,
for s >0 as well, it can not be decided whether or not
H(s) > H({) when !/ = s. Therefore, the H theorem given
by (8) is much stronger, and closely related in form to
Boltzmann’s original H theorem for classical gases.?

If we now shift attention to consideration of a subsys-
tem in contact with a heat reservoir, we can get an equa-
tion for the time evolution of the subsystem alone, which
il
is

A o) = = 1By = ENpis) = Tigerslpino®),  (9)

wherein T;;;.;. satisfies a detailed balancing condition
given by

Tisi00=Thisexpl= (1/2Kg T)(E; + E; = E;u - Ep) |,
(10

In (10), T is the temperature of the heat reservoir. The
interaction between the sybsystem and the reservoir

has been assumed to be an energy conserving, stochastic
interaction which leaves the reservoir always in equili-
brium while the subsystem relaxes. The T;;;.;» comes
from the average over the stochastic interaction followed
by a trace over all reservoir states. Equation (9) has
been used to show, for the case of magnetic relaxation
by a spin 3 magnetic moment in a fluctuating magnetic
environment, how the Block equations are rigorously
constructed. ® In general, Eq. (9) with (10) leads to the
canonical equilibrium density matrix asymptotically in
time.
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EARLIER THEORIES
The Pauli master equation

d
EPa(t)

=2, [WagPslt) - Weu Pa (1)), (11)
8

in which W, = W, and W, >0 for o #83 has been used

as a model for nonequilibrium thermodynamics.” The

P,(t)’s correspond with the diagonal density matrix

elements: P, () = {Paq (#)). Pauli’s equation does not in-

clude off-diagonal density matrix elements. Its original

appeal stems from the fact that
H(t) =25P,(t) InP, (1) (12)

o
is montonically decreasing, as is readily seen from
(11) by

H(t) Z, ; Pa (#) InP, (t)

=22[WasPa(t) - WBaPa (t)] hl-pa (t)
a B

=2§ W[ Ps(t) = Py (£) 1 InP, (1)

_ 15 5 P (8
=3 gz; WaslPy(t) = Py ()] 1n X0

<0, (13)

To prove (13), we used W,3=W,, and Y, P,(H) =1 for all
t. The identification of — KzgH(¢) in this case with the
entropy is very natural because the microcanonical equi-
librium distribution for the probabilities, P2}, as deter-
mined by equilibrium statistical mechanics, is

PP=1/N whena=12,.,.,N (14)
Consequently,

-Kg )_,P"“ InPQ = KBZ —~lnN (15)
or

S—S,=KgInN. (18)

This is the Boltzmann—Planck formula for the entropy,
S§—S;, when there are N states, each equally probable.
Thus, Pauli’s formula for — KgH(t) surely gives the
correct nonequilibrium expression for the entropy.

There is more appeal to Pauli’s equation then this. If
we again consider a subsystem interacting with a heat
reservoir, Pauli’s equation becomes

d

7 Fa() =Dl TasPelt) - TeaPu (1)) an
in which Tos = Tgq expl— (1/KpT)(E, — Eg)] is the detailed
balancing condition.® It is therefore natural to take for
the free energy the expression

F()=),P,(t)E, + TK5 2 P,(t) InP,(t) (18)

o a

since the first sum is surely the internal energy, even
in nonequilibrium situations, and the second sum is the
negative of T, the temperature, times the nonequili-
brium entropy. Using (17) with the detailed balancing
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condition, we get

th(t) 2_, P (tE, +TK82_, P (&) InP (1)

:Z%;[Taﬂpa(t) - TBaPa (t)]Eoe
+TKp 2323 [TysPs(t) ~ Tga Po(t) ] InP, (1)
o« B

N("‘

ZAZBI [TaBPB(t) - TBaPa (t) ](Eu - EB)

1SS Py (8)
5 %IZBJ[TGBPB(Z) - TBa (t)] Ps(t)
TR 5 5 [ TosPa(t) = TaoPa (8] Intte + nEedl)

2 b aB 8 Ba T Pﬁ(t)
_TKg 5 5 Tga Py (2)
‘T%%J[ TosPs(t) = TeuPo(B)]1n —-—-“PB()
<0, (19)

Thus, the free energy monotonically decreases to equi-
librium, as it should.

The identification of — KgH(f), in this case, with the
entropy is again very natural because the canonical
equilibrium distribution for the probabilities, P3’, as
determined by equilibrium statistical mechanics, is

Pt =(1/Q) exp(~ E, /K5 T) (20
where @ =3, exp(— E,/KzT). Now, note that InPg
=-~I@Q -~ (1/KzT)E,. Consequently,
~Kp L PE InPY =Ky 2 P2 1nQ +(1/T) L PEE,

~KyInQ +(1/T)U (21)

where U is the internal energy. In addition Kz In@ is
- {1/T)F, where F is the Helmholtz free energy. So we
have

-Kg 2 PQInPY=- (1/T)F+(1/T)U (22)

or
S=- Ky L/P3 InPY,
o

where S is the entropy. Thus, Pauli’s formula for
— KyH(t) surely gives the correct nonequilibrium for the
entropy.

The shortcoming of this approach is that restriction
to diagonal density matrix elements only is physically
unrealistic. In the case of magnetic relaxation for the
spin 3 magnetic moment, we need the full density matrix
because the off-diagonal density matrix elements give
rise to the transverse relaxation of the magnetization.®
The diagonal density matrix elements only contribute to
the longitudinal relaxation. In general, even though the
equilibrium density matrix will be diagonal only, the
nonequilibrium density matrix will possess off-diagonal
density matrix elements. Equations (9) and (10) are the
generalization of Pauli’s equation (17).
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FULL DENSITY MATRIX TREATMENT

We argue that the natural analog of Pauli’s H({) is

Trace[{p(!)) In{p(£)} ], (23)

wherein the logarithm of a Hamiltonian matrix is de-
fined through its diagonal representation.! Equation (23)
reduces to (22) when (p(?)) takes on its equilibrium value

<pij(/)>t_-;(1/Q)6” eXp(— E,‘/KBT) (24)

in the case of a subsystem in contact with a heat reser-
voir. It has already been proved that H(!) as given by
(23) for an isolated system is monotone.! We shall now
show, for the case of magnetic relaxation, that

F(t)=2.4p () E; + TK s Trace[{o(?)) In(p(£))] (25)

is also monotone when {p,;({)) satisfies (9) with (10).
This theorem appears to be difficult in general, so we
shall give a proof for the magnetic relaxation case only.
Equation (25) is clearly the natural generalization (18).

MAGNETIC RELAXATION AND MONOTONICITY

For a spin 3§ magnetic moment, ¢ and § in {p;;(1)) take
on only two values. Therefore, (p;;(#)) is a 2X2
Hermitian positive definite matrix. The values for
T;;ie;¢ can be worked out and are®

Tij45=2Q77 +2¢7,
T:;;:=0, i#], (26)
Ti11:=4Q"[1- (1/Qg) exp(~ E;/Kp T),

Tii5=~4Q7(1/Qp) exp(~ E;/K,T), i#j

i#j,

where @ =exp(— E/KyT) +exp(- E,/K;T) and ¥ and
Q° are the second moment correlation strengths for
transverse and longitudinal magnetic fluctuations in the
magnetic environment. To get the time derivative of
F(f) in (25), we proceed in the following way.

{p{")) has two eigenvalues given by

No=1%+ VI = ddet(p(0). 27

The positive definiteness of {p(/)) restricts the determi-
nant so that ; > det{o(#)). Equivalently, X, are both posi-
tive eigenvalues, and it is clear that A, +A_=1 as should
be the case for the eigenvalues of a density matrix. The
entropy term in (25) can be written as

TKg Tracel[{o(!)) In{p(")} | = TK5 (A, Inx, +A_Inr) (28)

since the trace is invariant under a unitary similarity
transformation. Moreover, A, +x_=1 for all { implies |

d ..
SO = (£

E
E,)4Q" 7 — o I}Xp KflT {paz) — €Xp (‘ ﬁ) (Pu{l
{4(Q**? + @) {p12){Pa1) — 8@ *P11)(020) +4Q%*(1/Qz) exp(~

that (d/dix, = — (d/dt)x_,

d
'(;]F(f) = E1d—i</311(f)> + Ez%(l)za(t»

Therefore,

d A,
+TK, (df ) In—= (29)

Similarly, {p;(¢)) +{0s(#)) =1 for all ¢ so that
(d/at)p,, @)y = — (d/dtXp,,(¢)) . Therefore,

d
SFD = (Ey - B) (pu(t)> +K, T(di ,,(t) ;g; (30)
To get {d/dHX.(8), we find
1

éx,() i1~ adetlo(en* /2[ 4;%det<p(t)>] . 3D
Using (9) and (26), one gets
{%det(p(/))

= PuXpaa) +010¢Psp) — Pr2){021) — (P12 D) (32)

=—4Q"(1/Qx) exp(~ E;/KpT){(p11){P22)
+4Q%*(1/Qg) exp(— Ey /Ky T){pyp)?
—4Q™%(1/Qr) exp(- £;/Kp THpy; {020
+4Q%*(1/Qr) exp(~ Ey/Kp T)pyy)?
+ (29" + 2Q°)({01){par) + (P12 (P2))

=4(Q%" + @ )p12){Par) — 4@ ¥ (011) {020
+4Q*[(1/Qx) exp(~ E/K3T){pyp)"
+(1/Qr) exp(— E,/KzT)pyy)?]

= 4(Q%” + Q)12 (0a1) — 8™ Xp11){Pz2) +4Q™ D1y {P22)
+4Q"[(1/Qx) exp(- £y /KpT)py)?
+(1/Qg) exp(~ £,/KT)py;)?]

=4(Q" + Q*Xpy2)(Pa) — 8Q™ X011 ){pz2)
+4Q%(1/Q) exp(- E, /K5 TXp,,)
+4Q¥(1/Q,) exp(- E,/Ky TXpyy)

since (1/Qg) exp(~ £ /KzT) +(1/QR) exp(— E,/K;T) =1
and <p11> + <p22> =1,
Again using (9) and (26), we get
d
(Ey - Ez) T <P11([)>
) 1 E,
=(& - Ez)‘le'yEe [exp <" K:T) P2z
E
— exp (.;{B—ZT) <p11>] . (33)

Therefore,

Ey/KpT){pg9) +exp(— E3/Kp T)<911>J} lnb . (34)

~KpT

V1 - 4det(p() A

To see monotonicity in (34) we must express various of the terms in different form, using 8= 1/KgT

(1/Qr) exp(— BE,)(py;) — exp(— BE) (g0 [p10) = {Pgp)

51; lexp(~ BE,)(p1) — expl= 8E;)(pge)] =
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(<Pn> - <Dzz>)
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(I/QR)[eXP(—' BE, <P11>2 + exp(~ BE1)(Pzz> ] <P11><Pza>
o1y = {022
_ (1/QR)[3XP(- BEz) ((Pn)z + <p11><pzz>) + eXp(- BE1)(<pzz>z + <pzz><p11>)] - 2<P11><Pzz>
B O11) = (022
(1/QR)[3XP( BE, ){pyy) + exp(-~ BE1)<P29] 2(011) (P22 . (35)
o1 - (P2
Therefore,
(Ey ~ E»)4Q%*(1/Qz) exp(~ BE;)pz5) — exp(— BE;){0yy)]
T [4Qx'y(1/QR)(eXp(— BEz)(Pn) + exp(— BE1)<pze>) - BQx'y@nxpzz)] In EXp[— B(E, — Ez)] (36)
(P11) = (P22
Consequently, lAdditionally,
d %,y A3 =71+ o) /TR 5 —v {0y
'(WF(” =KgT <4Q Q [exp( BE, ([311) +exp( BE1 <Pza> )\—-2 TA1F 13 :>/ y \1+_7’_le2,> (45)

- 50010 00) (G Gy ™ 6 9)

! lnL>
Y= ddepD) M

+ K TA(Q + @ ){p1){Par) N TETI0N 4—dle_t_(p_(_t)} ln;—: .

(37
From (27) it is seen that
V1—ddet{p(H)) =xr, - r_. (38)
The second summand in (37) is, therefore,
Ky T4Q™ + Qz)<Plz><Pz1>[1/(7\* =) ]In(x_/x,) <0. (39)

If the first summand in (37) is also nonpositive, then
we will have monotonicity. To see that this is so, we
first note that

1 '\ 1 (Pyp)
— b 40
A=A <P11> <Pzz> <P11> (40)
The proof of (40) requires writing {0;y) and {p,3) as
<pn>:§ +7 and <Pza>:%—7’y (41)

where 7 is positive. This means, of course, that {(p,,)

= {py,). This does not limit the generality of our proof
because the situation (0, >{py;) can be treated in a sim-
ilar manner, using on the right-hand side of (40) the ex-
pression [1/{(p,) = {p11)) ] In({py,)/{p»2)), which is in fact
equal to the right-hand side of (40). Therefore, we pro-
ceed with (41) with 3 > > 0. Now, from (27) we see that

=413V I- 4({py1){Pap) = 012021
=523[1-4(G - 2= (o)) /2

+7(1+(py){pz) /7)1 2. & (42)
Consequently,
A= A= 27 (1 + (PP ) /7P)} 222y = (011) = Pz, (43)
Equivalently,
/(0 = 1) <1/({pyq) ~ {022) (44)
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since the numerators satisfy z — (1 + {p;5){0g)/ )1 /2
<3 - 7 while the denominators satisfy 3 +#(1 +{p,){05)/
)!/22 4 + 7, Consequently, we get

A o P22
n3= )\+ o <plf> (46)

since the logarithm is a monotone function. Together,
(44) and (46) prove (40).

In (37) the first factor of the first summand can be
written as

Ky T{4Q"*(1/Qg)exp(~ BE;){pyy) + exp(~ BE;){p,,)]
- 8Q%%(p, (o0}
=Kp T4Q**(1/Qr)[exp(- BE,)(py1)
— exp(= BE ) (0, [({p11) — (022)).

as is seen from (35).
in (37) we get

(47)

Therefore, for the first summand

Ky T4Q™ yQ [exp(— BE,){pyy) — exp(= BE) (D) 1(€011)(022))

oo (SR i tng: |

X&
<K, T4Q"”QI—R [exp(= BE,)(pyy) - exp(~ BE;) 0z ]

[1n(ZR=EE0) + ]

[exp(= BE)pyy) — exp(= BE})(pyp)]
exp(= BE; Np,y)
x (ln [_T—M BE,) )
The first inequality in (48) follows from (40) while the

second follows from its form, as was the case in (39).
Together, (39) and (48) prove

=KzT4Q* ”Q

(48)

d

5 F(t) < 0. (49)
With the full density matrix for this magnetic relaxa-

tion problem we have been able to parallel the Pauli

master equation picture described by (19), One can then

begin to believe that F(f) as given by (25) is indeed the

nonequilibrium free energy.
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EXPERIMENTAL CONFIRMATION

The principal question is whether or not

- K Trace[{o(t)) In{p(t))] (50)

is indeed the nonequilibrium entropy. In (25) the term

Y1 Ep;;(1)) is surely the nonequilibrium internal energy,
so that only (50) remains to be considered. The advan-
tage in using this picture of a subsystem in contact with
a heat reservoir is that the temperature of the reservoir
is held constant. Consequently, one can use

— TKy Trace[{p(,)) In{p(t,))]
+ TKy Trace[{p(t,)) In{p(t,)) ] = 4Q (51

as the heat exchanged during the time interval from 7,

to #,. Equation (51) parallels the quasistatic relation-
ship d@ = Tds of thermodynamics, and appears plausible
here because the temperature is constant. Experimental-
ly, one must attempt to measure the heat exchanged

with the reservoir by the subsystem magnetic moment
and see if the time course of heat exchange follows the
time course of

- TK Trace[(p(2)) In{p(1)) ]

as determined by (9). Agreement would confirm all of
the physical assignments for the mathematical expres-
sions suggested in this paper.

Such an experimental test is perhaps quite difficult in
the case of magnetic relaxation as described here. Two
considerations must be made to properly test this the-
ory. First of all, we have assumed that fluctuation cor-
relations are very short lived compared with the relaxa-
tion times. This is evidenced in Eq. (6). For longer-
lived correlations there are reasons for believing that
the initial stages of relaxation do not show monotonic
free energy changes until times of the order of the cor-
relation time have elapsed, after which times the relaxa-
tion would become monotonic.® Second of all, we have
treated an isolated magnetic moment in a stochastic
magnetic environment. In reality this separation of sub-
system and reservoir may not be so clean, or easily

1218 J. Math. Phys., Vol. 16, No. 6, June 1975

achieved experimentally. Instead, the magnetic moment
may have nearby neighbors with which there is systema-
tic interaction as well as having a stochastic reservoir
interaction. These nearby neighbors can introduce some
oscillatory behavior in addition to the relaxation and can
renormalize transverse frequencies. A more sophisti-
cated calculation along the lines given here for the case
of neighboring magnetic moment interactions, and for
correlation times of greater length for the reservoir
magnetic fluctuations may be required before experi-
mental confirmation is possible.

Within the context described by Egs. (9) and (10), it
is also desired to find general proof that the free energy
as defined by (25) is monotonically decreasing, without
specializing considerations to the magnetic relaxation
case,
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Solution of potential problems near the corner of a conductor
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The Green’s function for a space defined (in cylindrical coordinates) by the intersection of two
half-planes S, (¢=0) and S, (¢=8 where 0 < 0 < 27) is found by a technique due to
Sommerfeld. The Green’s function (or its normal derivative} is required to vamish on the surface S
+8, as well as at infinity. When 8 = mw/k where k and m are integers, the solution can be

written in terms of the Green’s function u, for a Riemann space of m windings (in ¢). For

m =1 and 2, u, can be expressed in terms of elementary functions. For m = 3, we find u,, to
be given in terms of complete elliptic integrals. Application to some simple electrostatic and

magnetostatic problems is made, particularly for 6 = 37/2.

1. INTRODUCTION

The use of images for solving boundary-value prob-
lems in electrostatics and magnetostatics is well known.
It is not as well known, however, that Sommerfeld® ex-
tended the technique to a space consisting of several
Riemann windings. As a consequence, he was able to
find the potential of a point charge when the potential on
a nearby semi-infinite sheet is required to vanish. To
satisfy the boundary conditions, the images are placed
in the second winding. Sommerfeld’s procedure has also
been applied to the problem of a ¢harge near a conduc-
ting disk.2™® (For a more recent review, see Ref. 5.)

A method of finding the potential for the case of a
charge near two conducting planes intersecting at an
arbitrary angle ¢ (see Fig. 1) was also described by
Sommerfeld.’ In Sec. 2 we prove that his prescription
is correct. Then in Sec. 3 we consider some examples,
and specifically evaluate the case 8=37/2. In Sec. 4
we apply our results to some simple problems in elec-
frostatics and magnetostatics. Our conclusions are
stated briefly in Sec. 5.

The Sommerfeld technique is of interest now because
of ifs use in certain magnetostatic problems associated
with magnetic levitation of high-speed ground vehicles.®:’

2. SOMMERFELD'S METHOD OF CONSTRUCTING
THE GREEN'S FUNCTION

Let us find the Green's function G(X, x’) for the prob-
lem shown in Fig. 1. We use cylindrical coordinates:
for the field point x =(7, ¢, z) and for the source point
x'=(r’, ¢’.2’). The boundary S=S8, +S5, is formed by the
planes ¢ =0 and ¢ =9. The z axis is along the line of

{r.d,z)

FIG. 1, Cylindrical coor-
dinates of the field point
S, (r,@,2) and of the source
(', ¢’ ,2"). The z axis is
perpendicular to the figure
and is formed by the inter-
section of the planes S,
2 and S,.
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intersection of the planes S, and S,. On S we require
either G(x, x’) or 3G(x, X')/dn to vanish. Also G(x,x")
must vanish as |x| =, 0< @< 4§. Hence we require the
solution of

V2G(x, X)) =~ 415(Xx - X') (1)

in the region V, defined by 0 < ¢ < 8 for all » and z (sub-
jeet to the boundary conditions).

The distance between the field and source points is
Z')Z]llz.

(2)

R= )x—x" :[9’2+7’2—Zvr’cos((p—gp')+(z—

The Green's function when there is no boundary S is
simply 1/R. It can be written as

11 fla)da
k‘”zmi R, (3)

where R, is found by replacing ¢’ by the complex vari-
able o in (2). The function f{@) has a simple pole at
a=¢’ and C is a contour about ¢’ (see Fig. 2). Som-
merfeld! showed that if we take

B i explia/m)
Af(a)—fﬂz(a)_ m exp(ia/ﬁz)—EXp{i(ﬂ’/’n) '

(4)

we can find the Green's function for a Riemann space of
m windings in ¢ (m is an integer) as follows. The con-
tour C can be deformed to C’. The points @ = ¢ tia,
+(v=1)27, v=1,2,.,.m, are branch points of the in-
tegrand where o, is defined by (a, real and positive)

] ]
— !
| :
3
¢’ i '
| '
! t
b+ia, Yo+im-1)2m+ia,
c
NAA K LA .. 2 m2y
¥¢-ia, ¢+{m-1)2m-ig,

]

]

!

1

3§

i

i

|

]

FIG, 2. Integration contours in the complex o plane. Branch
cuts are denoted by dashed lines. The original contour C en~
closes the pole at ¢’. The deformed contour €’ is expanded
around the branch cuts.
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CV
¢+lv-12r+ia, FIG. 3. Definition of the con-
tour C, in the complex &
plane. This contour is formed
w-12r v .
- by going around the two
branch cuts lying between
Rea = (v —-1)27 and Reqa
Xy p+w-N2w-ia, =2vr.
i
I
t
Cy |!
|
I
i
cosia, = cosha, = [ + 72+ (z -~ 2" /207", (5)

The contribution to (3) from the portions of the contour
C’ at Rea =0 and Rex =m27 cancel due to the periodicity
of the integrand. The horizontal portions give a van-
ishing contribution when taken at Ima — + «. Therefore,
we are left with the contributions from around the branch
cuts, i.e.,

1 oo 7 (a)da
E—Erﬁfc "R (6)

The contour C, is around the two branch cuts defined by
a=gztia, +(v-1)27 (see Fig. 3).

Let us define

T 1 a)da
(o gosrt oo - A [ Ldadde (12)
(oY @
3 1 f da
T oman(2ry' 2 e [cosha, - cos(¢p — a)]*/2
x N (7b)
1-expl[(i/m)(¢’ ~ a)]

(™) is obtained by using (5) to write R, as

R, =(2r")*/? [cosha, - cos(¢ - a)]'/2. (8)

By setting aa =a’ + (v - 1)27, we find

1 fnlelde 1
ari J, T R,  2mu(2rr)®

o

% do
| Tcosha, - cos(¢ - a)*/2

C,

% 1
1 —exp[(i/m)@’ — a)]

_ 1 da’
T omn(2rv )72 ¢ [cosha, - cos(¢ — a’)]'/2

1
“Texplli/me - (v-12n—a'l}
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:uml.y’ przﬂ", (P"(V—l)z”;z']s (9)

so that
VR =2 u,lr, 0,27, ¢" = (v=1)27,2’]. (10)
It is straightforward to show that'-®
74m(7’, (p! Z;””» <;0’9 Z’)
B 1 j“’ dag
T ma(2rr’ Y2 (coshp - cosha,)* "2
@y
« sinh(B/m) (11)
cosh(B/m) - cos[(1/m) (¢’ - ¢)] .

As noted above, u,, is the Green’s function for a
Riemann space of m windings since it

(i) satisfies Laplace’s equation (by construction) ex-
cept when (7, ¢, 2) =~ (v', @', 2’) where it goes as 1/R,®

(ii) vanishes at infinity,
(iii) is continuous, and

(iv) is periodic in ¢ and ¢’ with period 2mn [as can be
seen from (11)].

An alternative derivation of u,, is given in the Appendix.

We define u (v, ¢, z;7', ¢', z') for arbitrary v (not
necessarily equal to an integer) by replacing m by y in
(11) [or, equivalently, in (7b)]:

w 1 [" ds
T (2 )R a, (coshg- cosha,)'/?

% sinh(B/y) .
cosh(B8/y) - cos[(1/¥) (¢’ - ¢)]

(119

Now for 6 =y7 (0 <y =2), the solution of (1) in region
V, which satisfies the boundary condition G=0 on S and
vanishes as |x| —~ © (0< @< 9) is

Gx, X =ulr, 0, 27", @' 2" =ulr, ¢, 2;7" - @', 2).

(12)

The proof goes as follows. Clearly u(v, ¢, z;7', ¢’, 2")
satisfies (i), (ii), and (iii) above. Likewise

u ¥, @, 2; %', — @', 2') must also satisfy (i), (ii), and (iii),
the only difference being that the 1/R divergence is not
encountered because ¢ and ¢’ are restricted to

0< @, ¢’'< 6. Hence G as written in (12) is a solution to
(1) which vanishes at infinity. We need only show that

it vanishes on S.

The variables ¢ and ¢’ enter u, only in the denomi-
nator of the last term in (11'). Hence we must examine
the quantity

1/{cosh(8/¥) - cos[(1/¥)X¢’ - )]}
—1/{cosh(8/y) = cos[(1/¥)¢’ + ©)]}

to determine the behavior of G on §; and S,. On S,
¢ =0 so that (13) obviously vanishes on this surface. On

(13)
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S,, @=8=y7 so that cos[(1/¥}¢’F¢)|=-cos(¢’/y).
Therefore, (13) must also vanish on $,, which means
that G=0 on S. This completes the proof since G
satisfies (1) and the boundary conditions.

If we require the normal derivative dG/9n to vanish
on S instead of G itself, then we must change the sign of
the second term in (12) to +. The proof proceeds in a
manner similar to that already given and, consequently,
is omitted. In summary then, the Green’s function for
the region V, of Fig. 1 is for 6=y7

Gx,x)Y=ur, ¢, z;7", @' 2 VFur, @, 2,7, = @', 2").
(14)

The (-) sign is for G=0 on S and (+) is for 3G/on =0 on
S.

We can relate (14) to the Green’s function for a Rie~
mann space of m windings («,) when y is the ratio of
integers m /k. Consider

Uy ¥, 0,257, @7, 2)

___k f"
%)

T oma2ry )2
y sinh(k3/m)
cosh(kg/m) = cos[(k/m)(¢’ = ¢)]

a
(coshB — cosha, )72

(15)

Let

sinhkx
S(x) = coshkx — coskA ' (16)
where x=8/m and A=(¢’ - ¢)/m. It is straightforward
to show that the denominator of (16) is

coshkx - coska = 2F1 ﬁ (coshx — cosA), (17)

where A, =4 + 2n(v - 1)/k. Now
S(x) = 19 In(coshkx RA) (18
=7 x coshkx — coskA). )

Substituting (17) into (18) and differentiating with respect
to x, we find

: k

S(x) = Sinhx 2 (coshx — cosa ). (19)

k =1

Equation (19) enables us to write (15) as
U ¥ @, 237 @7, 27)

_ 3 f" dgs sinh(B /m)

ma(2ry’ )72 | (coshg - cosha, )% k
1

" ‘ij (cosh(B/m) - cos{(1/m)|¢’ - ¢ + 2nm(v - 1)/k]P.

(20)
By definition (11}, then
U Vs @, 557, @, 27)
R
=2 unl7, @, 257", @' + 2vm(v = 1)/k, 2], (21)
=

Hence, the Green's function for §=mmn/k is
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k
(x, x' )= 25 {u,lr, ¢, 27", @' + 2om(v - 1)/k, 2]
vei

Fu, (v, @, 27, — @'+ 2tmv/k, 2"} (22)
The form of the second term follows from the fact that
u,, is periodic in ¢’ with period 2mm so that - ¢’ is
equivalent to 2mm - ¢’

A simple interpretation of (22) can be given. The
Green’s function for the region V, (defined by 0< ¢ <6
=mmu/k) is found by constructing a Riemann space of
m windings. The real source is at ¢’ in V,, (which is in
the first winding) and the (2k - 1) images are in the other
windings and/or regions of the first winding not in V,
(i.e., 6=mn/k< @ <27w). This is the result Sommerfeld
described. Some examples are given in the next section.

3. EXAMPLES

In this section we consider some specific examples of
spaces bounded by two intersecting, conducting planes,
and we evaluate the appropriate Green’s functions.
A. 8 = n/n (n = integer)

In this case m =1 and k=#n. From (11),
ul(’r) (Pv Z; V'a (,0,, Z’)

a8
cosha,)!/?

. "
= a(2rr' )R fal (coshB -

sinhf
coshB - cos(¢’ — @) *

(23)

Setting ¢ =coshg, 0=cosha,, and T=cos(y’ - ¢), we
have

wl(v, @, 27, @', 2")

dk 1

. w
_n(ZTV')‘;z,/; (E-0V7% -7

1 1

_ 1

T a2ry 2 (o-7)172 T R’ (24)
Hence, we obtain the well-known result that

G(x,x")= 2, (1/R,51/R])), {25a)

=1
where

R,={r®+ 7" - 2ry'coslg - ¢’ = 2n(v = 1)/n]+ (z = 2’ 2} /2

(25b)
and R, is obtained from R, by replacing ¢’ by - ¢’. Here
the Riemann space has only one winding (corresponding
to real space).

B. 6 = 27 (semi-infinite sheet)

In this case m =2 and £#=1. It has been worked out in
detail previously. 'S It was found that

U (v, .27, @', 2")=(2/7R) tan" (o + 7) /(0 = 7)]'/2,
(26)

where here we define 0= cosh(a,/2) and T=cos(¢ ~ ¢’).
In (26) tan™ is restricted to the range 0 to n/2.
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The Green’s function is
G(x,x")=(2/mR)tan"Y(c+ 1) /lo — T)J}/¢
F(2/7Rtan (o + 7') /(o - 7) [ /2, (27)
where R’ and 7° are found from R and 7 by replacing ¢’
with - ¢’.
C. 6 = 37/2 (edge of a thick, conducting plate}

In this case m =3 and k=2. From (11) we have

'”3(7’7(?’2?7'9(»0',2,):3__1_;W2_ /" a8 172
7(27r7r’) o (COSHB - cosha,)
8 cosh(B/S;;lﬁ(iéz)%(w’ -9) (28)
We now make the substitutions
£ =cosh(B/3), (29a)
o= cosh(a,/3), (290)
T=cos3(¢’ - ¢), (29¢)

so that

u (v, 0, 237", @', 2%)

__ 1 f ) dt L
Ta@r YT ) B - -3 (E-1)
(30)

Following Byrd and Friedman, °® we make a change of
variables:

t=o+A(l+x)/(1-x), =-1<x<1, (31a)
where

A=(30%-3/4)*/2, (31b)
Equation (30) becomes
uy(r, @, z; 7', @', 2"Y =B/ 2n(2rr’'AY/2(A+0-1)],  (32a)
where
B:[: dx(ili)llz 1+17?x [1—k(11—x2)]1'7' (32b)
nN=A-c+7)/(A+0o~-17), (32¢)
and

k% =41 - 30/24). (324d)
Equation (32b) can be rewritten as
B=[2(n+ 1)/n)}

x [*dx /(1= 2221 - (1 = )PP (1 =)}

- (;,/n) fo‘ dx/{(1 =222 [1 - k31 = x)) /2L (33)

Letting x = cos@ gives the standard forms for the com-
plete elliptic integrals®®:

B=(2/0) (1 -n)"0(n, k) - (2/n) K(k), (34a)
where
n=n?/(1-n?. (34b)

Substituting (34a) into (32a), we obtain
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u(v, @, 27, @', 27)

={7(2rr’AY /24 - o+ D] (1 ) Mln, k) - K(B)]

(35)
The Green’s function for 6 =37/2 is therefore
. e (1=m,) " (w,, k) - K(k)
N ’ 1/27-1 v v
G(x, x") = (29 A) /2] ;Zl( A—ort
(1 =n)) " Oy, k) = K(k) )
i A-0o+ T, ' (36a)
where
n,=n2/(1-7%), (36b)
n,=A-0+1}/(A+0-1), (36¢)
and
T,=cosi¢’+3n(v-1)=¢]. (36d)

The quantities n;, 1), and 7, are found by replacing ¢’
by —¢" inn, 7, and 7, respectively. As before, A is
defined by (31b), ¢ by (29b), and % by (32d). Equation (5)
defines «,.

4. APPLICATION TO ELECTROSTATICS AND
MAGNETOSTATICS
A. Electrostatic surface charge and potential mapping

The electrostatic potential V of a point charge ¢ at
(v, ¢’,2') near a grounded conductor of the shape shown
in Fig. 1 is, according to (14) (in mks units),

Vir, ¢, 2)
= (q/47T€0)[Hy(/V, @, Z;V’, (p’7 Z’) - Z'l'y(,r! @, Z;’V’, - ¢I~ 2,)J
(37)

for 8=y7. The surface charge density o, on the conduc-
tor is

14
o= —¢, % g_(p_ ., @=0 (surface S,), (38a)
|4
— 50% _27 @=vy7 (surface S,). {38b)

Let us consider the behavior of o near the corner
(i.e., asr— 0, ¢=0 or ym). Sommerfeld® has shown
that, for small », u, can be approximated by

uv, @, 27, @', 2"

1 1 , (1,7/) 1/7] o
=— 11+C, cos —(¢—¢") ) (39a)
vR, [ Y 4 (v-v R}
where
R0:[1,12+(Z_Z/)2]1/2' (39b)
We have evaluated C, and find it to be
4 (7 dt
= — T =y +1 . 40
C,=7 f Friy y =@+ 1)y (40)
<

C, depends only on y. Equations (39) and (40) are ob-
tained by noting that as » — 0

cosha, = exp(a,)/2= [¥2+ (2= 2'V]/2vy"— =,  (41a)
{coshB — cosha, ) /2= (ef — e®1)* 12 /Y2, (41b)

and
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FIG, 4, Traces of equipotential surfaces surrounding a point
charge q located near the edge of a thick conducting plate
(8=3n/2). The point charge is located at point P (»'=1, ¢’
=n/4).

sinh(8/v)/{cosh(s/y) - cos[(1/¥)(¢ - ¢")]}

~1+ 2exp(— B/7) cos[(1/¥)(¢ - ¢))]. (41¢)

From (37)—(41) we find (for either ¢ =0 or ¢ =y7)

~ = 4C, sin(¢’ /y)(r") /7

O 2.),2.” -1 /7R302 Ir

(r —0). (42)
For <t (y <1), o, vanishes as 7*/7"!, whereas, for
6>7 (y>1), o, diverges as 1/7'"1/7, For =1 (y=1),

o, reduces to

o,=—qv'sing’'/21R) (r=0), (43)

a result easily obtained by simple image techniques.

Figure 4 shows a set of equipotential surfaces sur-
rounding a point charge ¢ located near the edge of a
thick conducting plate (6 =3n/2). The point charge is
located at ' =1, ¢’=w/4. The equipotentials were
evaluated numerically from Eq. (36a). The complete
elliptic integral K(k) was calculated from the Gauss hy-
pergeometric series?! in k%; I(n, k) was obtained by nu-
merical integration of its defining formula.

To find the force on q, we must first subtract the 1/R
potential due to g from the total potential. Hence we
are interested in

V! =V - g/4ne,R.

We now restrict v to the ratio of integers m/k. The
subtraction of 1/R is done most conveniently by using
(10). Hence, 4me,V’'/q may be expressed as the difference
between Eqs. (22) and (10).

(44)

From m =1, the required force can be obtained easily
and need not be written down here. Form =2, k=1,
the forces have been obtained previously® and will not be
discussed here either. Let us consider then m=3, %
=2 (6=37/2). First we find

duy(v, @, 2,7, ¢, 2')
ar

fr('r’y @, (Pl):- (453,)

and
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u3(77 99, Z;'r’, ¢1r Z’)
d¢

for r=7', z=z', ¢ and ¢, arbitrary. Later we set ¢
=@’ and ¢, = ¢’ +2mm(v-1)/k, etc. Making use of the
well-known expressions for 3K /dk, 911/dk and 911/dn, ®
we find after a somewhat tedious but straightforward
calculation

fo(r' @, 0)=- % d (45b)

1

1,0 0002 4;’2 T e ) 6
and
fol', 0, 01) == silr;é;/(sia;;pi) < 1- 72)3/12(- ;: Tx/’éﬁ)?) ;
(46b)
where
T =coss (@~ @), 47)

The force on q is F==¢ Vv V"’ and is given by
Fy(r', 9") = (a*/ane)) [f;0", @', @' +37) = f,0, ¢, 37 = @)

—fj(,r'y (p': 67— (P') _fj(,y') (p': (10, +2Tf)
-fir', @', @ +4m)), j=7 0.

Clearly there is no z component to the force. The
periodicity of #; has been used in (48) to put all angles
@, into the region 0 < ¢, <6n, From (46) and (48) we
find that (dropping primes)

2 /4
Fad (5_
1

167¢,7
" 2cos(¢/3) [cos(¢/3) +V3/2 ]

(48)

V3

1
~ 2sin(p/3)[sin(¢/3) + V3 /2] > (49a)
and
F,- L 5in(e/3) cos(¢/3) +V3/4
°” "96V3 e, <[COS(¢/3)]3[COS(¢/3)+\/3_ 27
- sin(¢/3) + V3 /4
[sin(e/3)P[sin(¢/3) + V3 /2] ) (49b)

B. Magnetostatic current circulation function and
surface currents

The scalar potential € of a monopole g at (+/, ¢, 2’)
near a perfectly diamagnetic conductor of the shape
shown in Fig. 1 is, according to (14) (in mks units),
Q(T’ (P,Z) = (u04/477)[“y("’a @,2; 7, w', z")

+u7(7y <0,Z;7",- (P', Z')] (50)

for 6=yr. (The boundary condition is 32/3n=0on S.)
It is convenient to define a current circulation function
{or stream function)

&(r,2)=pu'Qr,0,2) onS, (51a)
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FIG, 5. The solid curve depicts the current circulation func~
tion for the top and side surfaces of a thick conducting plate
(6=37/2), under the influence of a point pole at »'=1, ¢’ =r/4.
The top surface of the plate (¢=0) is denoted by x, whereas the
vertical surface (¢=3¢/2) is denoted by y. The dashed curve
depicts the corresponding current circulation function for the
semi-infinite sheet (8= 2x).

=pitQ(r,ym, z) on S,. (51b)

From Ampere’s circuital law and the vanishing of B
=— VQ inside the diamagnetic conductor, we find that
the surface currents are given by

i,=3%/8v, i,=—2%/3z on S (52a)

and
i,=—03d®/ov, i,=03%/0z

on S, (52b)

By reasoning similar to that in Sec. 4A, we find that,
at »=0, @ is continuous and

®(0,2)=q/27yR,. (53)
The current flowing on S; away from the corner is
[from (52) and (53)]

i,=q(z=-2")/2myR, (r=0), (54)

The current flowing on S, into the corner can be shown
to be given by (54) also. Therefore, current flows
around the corner and is conserved. The current flowing
along the edge is found to be [from (39), (40), (50)—(52)]

. _ gC,cos(@ /) )t/

te = T nREE T 5)

(r—0)

for both S, and 5,. From (55) we see that i, vanishes as
/71 for <7 (y<1), diverges as 1/+*1/7 for
8>7 {y>1), and reduces to

i,=qr' cosg’/2nR} (r=0) (56)

for 6=7 (y=1). Equation (56) also follows from simple
image theory.
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When 6=27 (y=2), it is more convenient to define
the current circulation function as

& = 1t [Qr, 9 =0,2) - Qr, 9o =27,2)]. (57)

In this definition the surface currents i,= ad/dr and
i, == 3®/09z correspond to the sum of the currents as-
sociated with S; and S,. This is useful since the two

current sheets coincide.

Figure 5 shows the current circulation function & for
the top and side surfaces of the thick conducting plate
(6=37/2) along with the corresponding current circu-
lation function for the semi-infinite sheet (6 =27). The
point pole is located at »* =1, ¢’=n/4. i_is infinite at
the edge in both cases, but for the thick plate 7, is
proportional to » /3 at the edge whereas for the semi-
infinite sheet i is proportional to » /2,

The force on the monopole g is F=-¢ VQ’, where
' =8 - uy,q/47R. The calculation of F is the same as
for the electrostatic case (Sec. 4A) except for the sign
of certain terms. The result for the case 6=37/2 (v
=3/2) is (dropping primes)

U 1
Fo= 162 <3 \/3—+2cos(<p/3)[cos(<p/3)+\/3_/2]

(58a)

1
*3 sin(p/3)[sin{¢/3) +V3 /2] )

and
F -_ﬁaﬁ_m@w< cos (¢/3) +v3/4
= 96v3 7r? [cos(¢/3)Plcos(p/3) +V3 /22

_ sin(p/3) +v3 /4 )

[sin(e/3)B[sin(p/3) + V3 /2] (58b)

5. CONCLUSIONS

We have derived the Green’s function for the problem
shown in Fig. 1, i.e., for the region 0 < ¢ < ¢ and for
all » and z. When 8=m7/k (m and % integers), the re-
sult can be expressed in terms of the Green’s function
u,, for a Riemann space of m windings {in @) as first
suggested by Sommerfeld.! For m=1 and m =2, u_ can
be written in terms of elementary functions. We have
evaluated g here and find it involves complete elliptic
integrals.,

Our results have been applied to some simple elec-
trostatics and magnetostatics problems. In particular
we have investigated the behavior of the surface charge
density and the surface current density near the corner
formed by two intersecting, conducting planes. The
forces on a point charge and on a monopole have also
been calculated.

One unsolved problem of interest for applications is
that of the strip conductor. Although Sommerfeld stated
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that a transformation to bipolar coordinates would give
the solution, we found that it gives the Green’s function
for a disk instead.®

APPENDIX

An alternative derivation of u,(7, ¢, 2;7’, ¢’, 2’) can
be found by defining 6(¢ — ¢’) lin (A1) below] appropri-
ately for a Riemann space of m windings. Let us solve

Viu=—(41/%)8(r = ') 6(z = 2") (¢ — ¢') (A1)

subject to the boundary condition that u vanishes as v
or z— =, The standard solution proceeds by putting™

8z—z)y=7" ‘[)w dk cosk(z - z') (A2)
and
(@ —@')=mt 3 €, cosnly - @’), (A3)
n=0
where
Gn:é? n—:O,
=1, n=1. (A4)
The result is'?
u,=1/R
:(4/71)23 €, cosn(¢ - ¢’)
x [ dk cosk(z — 2") (kv JK (k7,), (A5)

where [, (x) and K (x) are modified Bessel functions of
order n. The symbol 7, (v.) denotes the greater (lesser)
of » and 7.

If, instead of (A3), we let
6(¢ - @)= (mm)* Zé €, cos[(n/m)@ -¢")] (A6)
=
in (A1), we will obtain w,, (m =integer). Definition (A6)

is appropriate to a space of m windings since 5(¢ — @')
has period 2mw. Let

u=(mr’yt e, cos — (¢~ ¢’)
m=0 m

x _[: dk cosk(z —z") v (k, 7, 7"). (AT)
In cylindrical coordinates
1 2 ou 1 0% 9%
ST FEENE
e Ve )T aq02+ 0z (A8)
so that
1 2 [/ dv, n\% vn o, 4r
L) (3 5 e
(A9)
Forv<v', v,=Al , (kv), and, for v>yv’, v,=BK_, (k7).
By integrating (A9) from »' - 0 to »’ + 0 we obtain
dog |70 4n
T (A10)

Also v, is continuous at »=7'. By making use of the
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value of the Wronskian, W[I (x), K, (x)]=-1/x, we find
that A=4n K, (kr’) and B=4n1 , (k7’). Hence,

Ma

n !
encos;(q)—tp)

3

n=0

(kr K, (k7). (A11)

n/m n/m

x [ dk cosk(z - 2")]
(¢]
Clearly u is a solution of Laplace’s equation except when
x— X’ where it goes as 1/R, satisfies the boundary con-
ditions, and is periodic in ¢ with period 2mn. Since
Sommerfeld* showed that u,, is unique, « must equal u,,.

We can demonstrate the equivalence directly. It is
known that!®

[ " dk cosk(z = 2') 1, ,, (kY JK, (k)

n/m

1
- W Qn/m-l /z(cosha), (A12a)
cosha= [+ 72+ (z - 2"?]/2r7’, (A12b)

where @,(x) is a Legendre function of the second kind.
An integral representation of @,(x) is (¢ >0, Rev>~1)1*

___l_ e exp[—(V+ 1/2)t]dt
Qv(cosha)—\@_[ (coshf - cosha)'’?

(A13)

Substituting into (A11), we find

©

2
)
wmrVry’ n=0

€ &€n/me1 /2(cosha) cos%(gg - ")

dt exp(-nt/m)

P i ). (cosht - cosha)*7?
V2 - dt
R (cosht - cosha)!/?

o 7
x Zoe" exp(—nt/m)cos — (¢ = @),

1 N dt
N ,[ (cosht — cosha)* 2

sinh(f/m)
cosh(¢/m) — cos[(¢ = ¢")/m]

(A14).
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Equation (A14) agrees with our previous definition of
u, [Eq. (1D].
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Yror the complete elliptic integral of the third kind we use
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H B /2 da
(n’k):[ (1+n sinD)(1 — k% sin%) 172
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7/2 d\:p
K(k)% (1 -k’ sin0) 172
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Cross sections in quantum mechanics
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The definition of scattering cross sections requires an averaging over wavepackets with random
impact parameters p; this leads to an integral of the scattering probability over all p in a plane
perpendicular to the incident beam. We show that, for scattering off a potential which is 0(1/r®) as
r—c, the scattering probability is O (1/p*~%) as p—o. Thus for any 8 > 3, the integral over

impact parameters is well-defined and convergent.

1. INTRODUCTION

The quantum theory of scattering has developed con-
siderably in the sixteen years since the beautiful papers
of Jauch.!2 In particular, great progress has been made
towards proving that, in single-channel scattering off
“reasonable” potentials, the ideas proposed by Jauch
are correct—that the asymptotic condition is satisfied,
and that the S operator is unitary. Most of the results of
this extensive work are summarized in the book of
Simon,?

However, one part of scattering theory—the definition
of the observable cross section—has received compara-
tively little attention. A realistic definition of the cross
section must be given, and this definition must be shown
to lead to the well-known result

do 2
d_Q: 'f(p"po)l .

(Here, and throughout this paper, we consider just
single-channel scattering and follow the notation of Ref.
4.) Newton and Shtokhamer® have emphasized that there
are two essential steps in defining and calculating the
cross section, First, the measured cross section is
related to the probability that a scattered particle be
observed in a given cone in position space; however,
the quantity that is theoretically accessible is the prob-
ability for a scattered particle to be found with its mo-
mentum in the corresponding cone in momentum space.
Dollard® has shown that, as one would certainly expect,
these two probabilities are equal. Thus one can take as
the starting point of the theoretical discussion the mo-
mentum-space probability

w(C—¢)=[ dp[ o)), (1.1)

Here w(C - ¢) is the probability that the incident packet
¢ be observed to scatter into the cone C with apex at
the origin; and S¢ is the out state corresponding to the
in state ¢.

The second main idea is that in a real experiment one
uses many different wavepackets which are randomly
distributed over a wide beam.” Thus we must use a suc-
cession of packets ¢,, where each ¢, is a packet ob-
tained from some definite ¢ by a rigid displacement p;
that is,

¢,) = exp(-ipep) ()

where the vector p, which can be called the impact
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parameter, takes on values in the plane perpendicular
to the incident mean momentum p,. If the p are dis-
tributed uniformly with density »,,, over the cross sec-
tion of the incident beam, then the total number of scat-
terings® into the cone C is

Ngc(C)=n fua Epw(C— ¢,)

where R is the radius of the incident beam (which we
take to have circular cross section). The importance of
this integration over impact parameters is clear in
Jauch’s original paper®; it was emphasized in a subse-
quent paper by Wichmann®; and has since been described
in at least two texts (Ref. 4 Chap. 3, and Ref. 10,
Chap. 5).

We now come to the step that is the subject of this
paper. One certainly expects the scattering probability
to be very small for impact parameters p that are large
compared to the interaction radius. Since the beam size
R is certainly large compared to the interaction radius,
this would mean that one can replace the integral (1.2)
with p <R by an integral over all p:

fm Fow(C - ¢,)= [ Pow(C ¢,).

With this replacement one can quickly derive the result
(see Ref, 4, pp.49-51)

Nge () :nmco(c)

(1.2)

inc

{1.3)

where o(C) is the cross section for scattering into the
cone C:

o(c):fcdsz,,\f(p~po)|2.

By choosing C to be a small cone of solid angle d2 we
then obtain the differential cross section do/d2 =1f12.

That the probability w(C - ¢>p) goes rapidly to zero for
large impact parameters p, and hence that one can
make the replacement (1.3), is certainly a very natural
assumption. However, we are unaware of any published
proof of the result, and the result is obviously very im-
portant. If the integral over p with p <R does not con-
verge as R —«~, we would have the absurd situation
where the scattering cross section depends on the size
R of the beam, however large we make R.

In this paper we consider the scattering of a particle
by a fixed potential and prove that, for suitable poten-
tials, the probability w(C — ¢,) does go to zero as p—<,
and that it does so sufficiently fast to justify the converg-
ence of its integral over all p. We shall state our pre-

Copyright © 1975 American Institute of Physics 1227



cise assumptions and results in the next section. How-
ever, the essential points can be briefly summarized
below.

We shall show that if V(r) falls off like 1/+* at large 7,
|V(r)| <K/#* (v sufficiently large),

then the outgoing wave (S¢,)(p) falls off at least as fast
as 1/p%? for large impact parameters; that is (for suit-
suitable ¢),

| (56,0} <K’/p*? (p sufficiently large). (1.4)

This result shows, just as one would expect, that the
rate of decrease of (S¢,)(p) with impact parameter p
depends on how fast V(r) falls off with .

Since the scattering probability is given by (1.1) as
w(C — )= [ &p|Se,)®) 17, (t.5)
our result implies that
w(C— &,) <K/,

In particular, provided >3 (that is, V falls off like 1/
7*¢ for some € >0), w(C+ ¢,) falls off like 1/0*(5 > 0),

and the integral [ &®pw(C - ¢,) is convergent as required.

Naturally, we shall need certain additional {and
quite mild) assumptions on the smoothness of V(r) and
on the incident wavefunction ¢(p). These details will be
discussed in Sec. 2.

2. ASSUMPTIONS, DEFINITIONS, AND RESULTS
The potential

Concerning the potential V{r) we make the following
assumptions:
(i) For some 8>3 and all ¥ > some R,

| V()| <K/#5;
(i1) v e L3(R?);

2.1)

(iii) except at a finite number of point singularities,
V(r) is locally Holder continuous.

As mentioned above, assumption (i) is essential for our
proof. Assumptions (ii) and (iii) are more technical and
we use them simply to guarantee the validity of some
standard results from time-independent scattering
theory. Specifically, Ikebe has shown that conditions
(i)—(iii) imply the standard relations (2.2) and (2.4)
below and the boundedness of the stationary wavefunc-
tions ¢;(r). [See Ref. 11, Eqs. (2.2), (1.1), and (1.2).]
These results can be proved under a variety of different
assumptions, some weaker than ours in some respects,
as discussed by Simon.?

The incident wave packet

We consider an incident wavepacket given by a mo-
mentum-space wavefunction ¢(p) which is infinitely dif-
ferentiable and of compact support,

¢ Cr(RY).

Further, if p, denotes the incident mean momentum
(i.e., p,=(p), #0), then we require that the support of
¢ lie in the half-space p- p,> 0. This means simply that
all components of ¢ are moving forwards.
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We define @ to be the angular half-width of the incident
packet; more precisely,

o =sup{angle between p and p,:pe supp@}.

(See Fig. 1.) Clearly 0 <a <7/2, and in practice a is
of the order of a degree or less. We define the forward
cone C,

C, ={p: (angle between p and p,) <a};

that is, C, is the smallest circular cone with axis p,
that contains supp¢. (See Fig. 1.) Finally, we define
Py @nd p,; to be the largest and smallest values of |pl
in suppo.

The cone of observation

We discuss the probability that the scattered particle
be observed in a circular cone C with apex at the origin
0. In order to define a cross section we must require
that C not overlap the forward cone C,: that is,

cnc, ={0}.

This requirement makes precise the well-known re-
striction that one cannot measure (directly) a forward
elastic cross section,

The argument and results
The outgoing packet corresponding to the incident

packet ¢{p) is

(Sd>)(p)=¢(p)+;%j s, fp — pw) o (pu) (2.2)

where u is a unit vector. (See, for example, Ref. 4,

p.49.) Since we require (S¢)(p) for p inside the cone

of observation C, it follows that ¢(p) is zero. Thus in
our case we have (replacing ¢ by the displaced ¢,)

(s¢,)(p):é—i fdQuf(p«pu)exp(—ipopu)¢(PU) (2.3)

with p in the cone C. The amplitude f(p—p’) is given by
the well-known expression (see, for example, Ref. 4,
p.169)

fo—p)=-Q@rlPmip-|V]p".

Thus we can write!?

(2.4)

Zi_ﬁf(p'_p“):‘(2”)'”27”17de’VLD;(r)*V(r)exp(ipu- r)

= fdsan,,(r) exp(ipu- r) (2.5)

CONE OF OBSERVATION C

FORWARD
e CONE C¢

SUPP ¢

FIG. 1. Incident packet ¢, the forward cone C,, and the
cone of observation C.
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where we have defined
U,(0) =~ @) Pmpy (r)* v (r). (2.6)

The important point about the function U,(r) is that its
rate of decrease as » — = is the same as that of the
potential. This is because the stationary scattering
wave #;(r) is bounded (and also continuous) for all r and
all p in any compact domain not containing 0. [See
Ikebe,'* Eq. (1.2).] Since we are concerned only with p
that lie in the cone C and satisfy p_, <p < p,,, it fol-
lows that

|U, ()] <K,| V()| 2.7
for some constant K,, for all r, and all p of interest.

Substitution of (2.5) into {2.3) and a change of order
of integration (which is certainly justified) yield

(S¢,)®) = [ & U,(r) [ d, explipu- (r - p)]¢(pu)

=fd37 U,(r)g,(p~1) (2.8)

where

g,(E)Zf df, exp(-ipu- £)p(pu). (2.9)
The result (2.8) expresses the outgoing wavefunction
S¢, as a convolution of U,(r) and g, (r). Therefore, the
behavior of S¢, for large p is determined by the behav-
ior of these two functions. We have already seen that
U,(r) has essentially the same bound as V(r)—see (2.7).
Thus it remains to examine the function g,(¢) given by
(2.9). This function is nearly (but not exactly) the
Fourier transform of the incident wavefunction ¢(p).
If it were the Fourier transform, then g,(¢£) would fall
off faster than any inverse power of £ as £ —. Unfor-
tunately, the integral in {2.9) is over angles only (not
over all p) and the situation is more complicated. We
shall prove in the next section that

lg, ()] <K/t (all &)

where K, is some constant independent of p and &; and
also that, provided £ is cutside both the forward and
backward cones + C,»s

| g,(6)| <K,()/&" (any n, £+ C,) (2.11)

where K,(n) is a constant depending on the integer n but
not p or &.

(2.10)

Returning to the convolution (2.8) for the outgoing
wavefunction, we find that

| S8,)0)| < [ a&®r|U, ()] |g,(0~1)]. 2.12)

We shall show in detail in Sec. 3 that if this integral is
split into two parts, » S pcose, then in the first region
we can apply the bound (2.11) while in the second we can
use (2.10). Using the bound | U,(r)| <K,/#* for large 7,
we obtain

[(S0,)©)] <K, (n)/p" + Ky /pP~2 (2.13)

for p sufficiently large, and for all p of interest (i.e.,
all p in the cone C with p_, <p spm“). Since » is arbi-~
trary, (2.13) implies that

[(56,))| < K,/0%2,

as promised in the introduction.
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The scattering probability w(C ~ ¢,) is given by Eq.
(1.5) and can now be bounded as follows:

w(c«¢,)=fd3pl(5¢,)(p)|2
(o]

K2 Pmax
< [;u—a_%r f ase, f p*dp
C

Pmin
=K/,

Thus, as anticipated, we see that w(C — ¢,) falls off

at a rate determined by the decrease of the potential (1/
7%). In particular, since >3, w(C — ¢,) falls off like
some power better than 1/p? and the integral of w(C+ ¢,)
over all impact parameters is convergent,

3. DETAILED PROOFS
Bound on g, (£)
We have to justify the bounds (2.10) and (2.11) on the
function
g,(8)= [ d%, exp(-ipu- £)¢(pu). (3.1)

If we choose spherical coordinates with polar axis along
£ and label the direction of u by (8, ¢), we can rewrite
{3.1) as

gf,(s)=f_i dz exp(- ip£2)®(p,2) (3.2)
where z =cos6 and
3(p,2)=[ " do o(pu). (3.3)

Now it can be shown that, if ¢ c C5(R?), then &(p,z) is
infinitely differentiable with respect to z on the closed
interval [~1,1] and that its nth derivative satisfies

o"d
0z"

(p,z)» < Kq(n)
where K,(n) is a constant depending on # but independent
of p, z, and E&.

If we integrate (3.2) by parts, then we obtain

g,(s)=pig([exp<- ipe2)® (p, )1,

- J dz exp(- ipgz)%(p,z)).

. (3.4)
Thus, since p=p,,,

’gp(g)’ gKlo/g
which is the bound (2.10).

(3.5)

If the polar axis—that is, the direction of E—does not
lie in the forward or backward cones % C,, then the end-
point term in (3.4) is zero. In this case we can integrate
by parts as often as we please and obtain

& <K /& m=1,2,.-2), (3.6)
which is (2.11).
Bound on (S¢, }(p)
The scattered wave is given by (2.8) as
(S¢,) )=/ d&®rU,(r)g, (o-1).
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We now split this integral into two parts, » S pcosa,
where a is the half-angle of the forward cone Cy- (See
Fig. 1.) If ¥ <pcosa, then it is easily seen that r - p
does not lie in either + C,. Thus for this part of the in-

tegral we can use the bound (3.6). For the other part we

use (3.5) and obtain

1 U, (1)
r<pcomc
| Up (1)
+K10J d%——————-lr:(pi .

r>pcosa

In the first term we can make the replacement | r —pl
> p(l ~ cosa), while in the second we can use the bound
1 U, ()l <K,/7® (for p sufficiently large). Thus

p(1 = cosa)

+
K”f T ol rl—pl -

r>pcosc

66,)0)] < s [ vl v, o)

The first integral is finite,!*® while the second integral
can be performed explicitly and has the form K,,/p®2.
Therefore,

K
| (s d>,)(p)l < —i;,,(l) +;)—i;(:é3~ [p sufficiently large],
which is the bound (2.13).
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An integral operator expression is formulated for the n-dimensional harmonic oscillator by exploiting
the U(n) symmetry group of the oscillator Hamiltonian. The operator expression is disentangled
using a Baker—Campbell-Hausdorff formula appropriate to the dynamical group Sp(4R) of the
Green’s function. The BCH formula is computed in a faithful matrix representation of Sp{4R). It is
sufficient to compute the disentangling theorem for the more restricted dynamical group SO (2,2).

In a previous correspondence! the Green’s function of
the n-dimensional harmonic oscillator was computed.
The computation exploited the U(n) symmetry of the os-
cillator Hamiltonian and employed an aigebraic deriva-
tion of the Green’s function matrix elements. We return
to this problem to show how these matrix elements can
be computed by exploiting a Baker—Campbell—Hausdorff
formula for a dynamical group Sp(4; R) associated with
the oscillator.

The Hamiltonian for the n-dimensional oscillator can
be written

1 mw?
o e——— . -+ .
H 2mpp ——0—2 X*X

=nw, 2 (alaﬁ%)’ W
k=1

where

x:(xl’ ’x")’ p:l—vx: (l—al—’ ,l_ax >7

a,= L (ax,+V,), a= m_}‘;"l,
2a

t=—— (ax,= 9, [ai’ak]__‘alk )
a

The »* bilinear operator products ala, (1<i, k<n)
commute with the Hamiltonian (1) and therefore generate
its symmetry algebra, u(n).

It is useful, for dynamical purposes, to introduce the
Green's function

SM)=§11/(H-\)|x) (x #eigenvalue of H) (3)
It is convenient to express this in dimensionless co-
ordinates u=vax, v=vay:
a\?’2 & 1 1
saw=(2f" 5 g gy (- w0 w-vap
xexpl-(u-u+v-v)/2], (4)

where £, = Fwy(v+ 3n). A useful integral representation
for the Green’s function is

/2
SO v, u)= (%) 1
[}

Aw,

f dt £7/201 expl3e(u=9,) - (v= V)]

1231 Journal of Mathematical Physics, Vol. 16, No. 6, June 1975

xexp[- z(u- u+v-v), (5)
where we have introduced the dimensionless parameter
g =X/lw, and Re(n/2 ~ n)> 0. It remains to evaluate the
operator expression under the integral.

In order to carry this computation out, we will try to
rewrite the exponential operator product as a product of
exponential operators in which all the differential op-
erators are ordered to the right and all the operators of
the form u+u, v-v, u-v are ordered to the left. Such
operator reorderings can be carried out in closed form
whenever the arguments of the exponential functions
are elements in a Lie algebra.

The operators appearing in the exponentials in (5),
namely u-v, u°V,, v°V,, V -V  u-u, v+v, donot
close under commutation. However, their commutators
give rise to four additional operators: 3{u-v, + vV, w
=u-V,+n/2, (Ve V, ¥V V)=V-V +n/2, V-V V V.
These ten operators close under commutation to give a
realization of the real form sp(4;IR) of the Lie algebra
C,. As a result, standard® matrix techniques can be
used to disentangle the product of exponential operators
appearing in (5).

To construct the desired BCH formula, we must find
a faithful finite-dimensional matrix representation of
the ten operators spanning sp(4; R). The smallest such
representation clearly consists of 4 X4 matrices:

r A22 A21

A (ue v, +3n) A A 0
1z 13

0 _Au ‘AzlJ '

+ A, (v Y, +3n)

+AL,u 'V, +4, vV,

- Alz - Azz
(6D)
B,, 2B,
0
Byuru+Byuvev 8 2B, By
+B,usv —_—
Lo ] o]
(6U)
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CV, v, +CpV,- v,

11 "u 22 v
—_—y

+Cyp V-V,

—_ —

(6L)

Here 8 and y are scale factors and 8y = - 1. The Lie
algebra sp(4;R) is generated by all real 4X4 matrices
A obeying JA+ATJ=0, where

0 0 O L1
SRREE N

In this 4 X4 representation, the product of the ex-
ponential operators appearing in (5) is represented by

~- - -
' -0, 12] k 0 ‘ -0,

expzt exp , (8)
e e ]

where o_=(} ) and we have chosen B=+1, y=—1. The

exponentials appearing in (8) are group elements in
Sp(4; R). Moreover, both exponentials are simple to
carry out, since both involve exponentials of nilpotent
matrices whose squares are zero. The exponential pro-
duct appearing in (5) is an abstract group element in
Sp(4; R) whose matrix representative is obtained simply
from (8) by matrix multiplication:

1 [12
1 1 X
L-ggzz '12+§gox Lo ‘ I, J

..Ox

We now demand that the group element (9) be written
as the product of three group elements, one representing
differential operators and ordered on the right, another
representing operators of the form exp(u-v+etc.) and
ordered on the left, and a third representing exponen-
tials of mixed operators (u-V,,

ete. ):
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Equating the group elements (9) and (10) provides four
equations which may be solved for the matrices
N, R, L M:

N=I,+t0, =exp(~7I, - 50,), (11a)
28 1+ gz
R=1"wh-1-7 % (11b)
L= lfiz (I, = £0,), (11c)
M= 1 _1 2 (I, - to,)=exp(vl, + s0,), (11d)
=1 tanhs=-¢, (12)
The matrix BCH formula, valid in Sp{4: R), is
o 0] ]
expzt exp
o] Tl
[0 ] /- iz, - s ene
= exp
lo | o
}V ¥, +s0, 0 ]
X exp (13)
L 0 l -7, -s0,
F 0 0
Xexp
[[— 38/(1- 9], - £0) 0

The desired operator BCH formula is now obtained by
replacing the matrices in (13) by the operators they
represent:

expl3E(u—"9)+ (v=- V)] exp[- z{u-u+v- V)= (2))(3)

(14)
o) = exp< 28 ;2 usv-— ;%(u u+v- v)) (15a)
X2)=exp(r(u-V,+ vV, +n)+s(u:V,+v- V)], (15Db)
((3)=exp (1%_’2&2 [V, "V, = 35(V,*V,+V,-V )J) (15¢)

The matrix elements of the Green's function S(x ; v, u)
are now obtained by applying the disentangled operator
on the right-hand side of (14) to the constant function 1.
Clearly,

(16a)
(16b}

0B)-1=1,

0(2)- 1 =(" )2 =(1

gy,

Thus, only the operator (){1) remains explicitly in the
integral expression for the Green’s function:
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[¢] n/2 1 ! n/2-p-1 2\-n/2
Sy, u>:<;) — dE En/ERe (] g?)
0

o

2
><exp(i2?—s£2 u-v-— ;%ég—(u ut+v- v)) amn

Remark: In the final Baker—Campbell—Hausdorff
operator formula only six operators appear explicitly:
u'v, tuu+vev); @ v,+vev,), @V, +v-V,+n);
V,'V,, 2(V,*V,+7,"V,). These six operators span the
subalgebra so(2, 2) of sp(4; R), corresponding to the
Lie algebra restriction C, ¥ D,. Therefore, it would
have been sufficient to compute the disentangling theo-
rem for this subgroup only. If we define the generators
J; of the symmetric so(2,1) subalgebra of so{2, 2) ac-
cording to

(u-v-v,-v),

H

=4
Jy =30V, +vV _+n),
Jy=3(u-v+9,9) (J, compact) (183)
and the remaining generators K, according to

Ki=3uutv-v)- Y,V ,+V,-9),
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K,=3(u-V, +v-9),
Ky=3(u-u+v-v)+{V,-9,+9 V) (K, compact),

(18b)

we can rewrite (14) as a BCH formula for so(2, 2). Since
the linear combinations 3(J, +K,) and

3 ;- K,) (i=1, 2, 3) span mutually commuting subalge-
bras of so(2, 2) corresponding to the Lie algebra de-
composition D,=A, B A,, we finally get the following two
BCH formulas for so(2, 1), responsible for (14):

exp[F E(L, 7 L,)] - exp(¥ (L, + L,)]

=ex (IFI:F
= exp Tzt

Tg(L1+L3)) - exp[2(r +5)L,]

exp( 3 lis (Ll—Ls)), (19)

with L ,=5(J; +K,)or 3(J;, - K,), L, compact.

1G. Berendt and E, Weimar, Lett. Nuovo Cimento 5, 613
(1972).
’R. Gilmore, J. Math. Phys, 15, 2090 (1974),
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The de Donder coordinate condition and minimal class 1

space-time
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Instituto de Fisica, Universidad Catélica de Chile, Casilla 114-D-Santiago, Chile

(Received 11 December 1974)

By means of immersion techniques a set of “adapted coordinates™ are introduced as preferred
coordinates for class 1 space-time. It is proved that the necessary and sufficient condition for the
adapted coordinates to be harmonic coordinates is that class 1 space-time be a minimal variety.
Some interesting features of the embedding approach to curved space-time are also shown in terms

adapted coordinates.

1. INTRODUCTION

Some arguments on behalf of the embedding approach
to general relativity have been presented by the author
in a previous paper, ! In the present note we prove that
if class 1 space—time? is a minimal variety® there
exist harmonic coordinates, which represent a kind of
preferred coordinates according to a well-defined geo-
metric feature, This property will be proved and briefly
discussed by means of immersion techniques,

Einstein’s theory of gravitation has an enormous
gauge freedom, notwithstanding the fact that the princi-
ple of general covariance, by itself, is devoid of physi-
cal content, for, indeed, every physical theory may be
written in a general covariant manner,%® On the other
hand, it is clear that the geometry of some generic
space—times may admit a class of preferred coordinates
and that the group of general covariance is therefore
unnecessarily broad for handling the dynamics of such
particular geometries. This point of view has been
stressed by Fock® in connection with the existence of
harmonic coordinates as the preferred ones for some
kinds of gravitational problems,

The most favored approach to the issue of preferred
coordinates in general relativity consists in fixing the
gauge to some extent by imposing a set of ad hoc coordi-
nate conditions directly upon the metric tensor.” The
question thus arises, quite naturally, whether there
exist some variational principles leading us to the de-
sired coordinate conditions,® i,e., allowing us to ob-
tain a set of “optimal” coordinates defined by a station-
ary integral property, The study of some extremal be-
havior of the coordinates, however, is barren so long
as we lack the geometric meaning of the variational
principle involved, ? In this paper we show that such a
principle exists for fitting harmonic coordinates in
curved space—time, at least when the space—time be-
longs to the simplest embedding class. As is well
known, the concept of minimal variety is arrived at by
generalizing the definition of minimal surface. Thus
(according to the result to be shown in this note), for
curved space—time embeddable in five dimensions, the
variational principle leading to the harmonic coordinate
condition® states that the four-dimensional volume in-
tegral must be stationary;i.e.,

8 [d*xV = glx)=0.

It is interesting to observe that if we handle this prob-

t.1)
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lem directly, the corresponding Euler—Lagrange equa-
tion collapses to a useless identity; namely, we get

(14)—1/2)[(-—g)’”]'u50, (1.2)

for w=1/2 in this case.'® Therefore, a different ap-
proach must be followed in order to relate (1.1) with the
de Donder coordinate condition.,

The present note deals only with space—time geom-
etry. The dynamical content of class 1 space—time
will be discussed elsewhere, In Sec. 2 we prepare the
five-dimensional immersion scaffolding, Covariant de-
rivatives afforded by the embedding formalism are
briefly presented in Sec. 3, while in Sec. 4 we analyze
the second fundamental form of the embedded space—
time, Finally, in Sec. 5 the connection between minimal
class 1 space~time and the existence of harmonic co-
ordinates is proved.

2. THE EMBEDDING SCAFFOLDING AND THE
ADAPTED COORDINATES

Let us consider the class 1 relativistic embeddings
from a synthetic point of view; namely, we consider the
curved space—time manifold as a given four-dimensional
(normal hyperbolic) hypersurface E,,, already
embedded in a five-dimensional flat space M ,. In £,
we adopt signature (- 2); therefore, according to the
local isometric embedding theorem,* the pseudo-
Euclidean metric tensor belonging to the host space is
given by 71,5 =diag{+ - - - £), in terms of a system
{X*} of Cartesian rectangular coordinates.'? We explicit-
ly decompose the fundamental form of M , in the fol-
lowing way:

ds?=1,p dX* dX® =1, dX* dX”+ n(dX*')?, 2.1)

where, clearly, 7,,=diag(+— — -) denotes the usual
four-dimensional Minkowski metric, and n=1n,==x1.
We now assume that the embedded E , is defined by
introducing a coordinate relation in M, of the form

E(X*")=EX,X')=e, 2.2)
say, where e is a constant, Since we want E,, to be
a space—time-like hypersurface, somehow leaning
smoothly on the (X°, X', X*, X®) hyperplane (i.e.,
Minkowski space—time M), we require

nnABE,A(X)E,B(X)] >0,

XS By

Hence the unit 5-vector N, normal to E,,, at points on

(2.3)
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E 4, in terms of the {X*} coordinates, obtains:
NA(X)= (TmBCE’BE)c)-lle,A(X)‘xEE@).

Next we introduce new curvilinear coordinates {X*}
in the embedding space. These we choose as the fol-
lowing adapted coovdinates":

(2.4)

v XK
Xt =X*,

2= E(X,X*),

(2.5)

so that in terms of these coordinates E,, is simply
given by the equation x* =¢ (hence the name). The
Jacobian of this transformation is equal to 9 E/9 X?
=E ,, which we obviously assume to be different from
zero. Then for the inverse transformation of (2.5) we
write, say,

Xt =x*,

X4=F(x",x4).

(2.6)

If we now define the function ¢(x)=F(x”, ¢), we observe,
from (2,6), that the following parametric equations hold
as a definition of £ ;:

Xt =x*,
X'=o(x).

Hence, for a local isometric embedding we have, as
usual, *

2.7

gu)=X" X7 gy @.8)
and thus we get
g,,0)=mn,,+n6  (x)o (x). 2.9)

Henceforth we use {X*}, i.e., the first four adapted
coordinates, as a set of internal curvilinear coordinates
for £,,, while retaining the old Cartesian coordinates

{x4 in M .

The decomposition (2. 9) of the metric g,, holds local-
ly, at least, over that coordinate patch on which rep-
resentation (2.6), with x*=¢, is valid, Furthermore,
the stated decomposition of the curved metric has gen-
eral tensorial character.'® The adapted coordinates
{x*}, however, are preferred coordinates, as are the
Galilean coordinates in spacial relativity, for they
bring the flat part of the curved metric g, to the canoni-
cal Minkowskian form 7,,. In paper I we have shown,
for the general local embedding scheme, that the intro-
duction of this special kind of preferred coordinates re-
duces the general covariance of the theory, investing
Einstein’s theory of gravitation with a new restricted
covariance under a group of transformations which
represents an enlargement of the Poincard group.?® For
class 1 space—time this group corresponds to five-
dimensional rotations and translations in M 4.

3. COVARIANT DERIVATIVES IN THE EMBEDDING
FORMALISM

In this section we present some useful formulas which
will be needed in the following discussion, First we
observe that (2. 3) means that the determinant g(x) of the
space—time metric tensor g, (x) has the property

—g)=1+m*¢  (x)p (x)>0, B.1)
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everywhere on the embedded patch. The expression for
the contravariant metric tensor in £, in terms of the
adapted coordinates, is

wr(yym puy _ 1P EP

g (x)—'n _1+n¢')‘¢,)¢ ’ (3-2)
where

vy o O

¢t=n ¢’V_1_n¢)n¢n ’ (3.3)
and also

ENTRTY __ﬂ_,_

pr=g ¢,v_1+n¢')\¢,)t' (3.4)

These relations hold because the “fundamental potential”
¢(x) behaves as a scalar field on both (curved and flat)
space—times.'® Furthermore, it is interesting to ob-
serve that the fields g,,,7,,,¢, ,, ¢'* have tensorial
character in both space—times,!”

Finally, for the Christoffel symbols, in terms of the
adapted set {x*}, we get the expressions

A _n¢,uu¢)')‘ *77(1);“;,,(]5”‘ der_I«)~

WAT T, 67 T 1m0
These expressions manifestly define a tensor field
[T (), say] belonging both in E,, and M ,,. Indeed,
they represent a space—time tensor whose components,
once a set of adapted coordinates is introduced, become
identical with the components of the affine connection,
Of course, this result is a “virtue” of the adapted co-
ordinates only, for, clearly, we have to transform
these quantities differently (as a tensor and as the af-
fine connection) while going to a general set of space—
time coordinates. In effect, (3,5) shows that I is that
part of X } which always transforms as a tensor while
using general coordinates; i.e., this decomposition of
the affine connection preserves its geometric character
under a general transformation of coordinates, since
the transformation law obeyed by the Christoffel sym-
bols will not mix up the two parts of the affine connec-~
tion. This result strongly suggests, as does the con-
comitant decomposition of the metric, the very special
character of the adapted coordinates,

(3.5)

4. THE SECOND FUNDAMENTAL FORM OF CLASS
1 SPACE-TIME

The components of the unit normal to £, at points
on E,, interms of the {X*} coordinates, can be written
explicitly as functions of the internal (adapted) coordi-
nates {x*}. One finds that

b, u
=
\¥= a6, o

NA(X)=? . (4.1)
N :(1+n¢’v¢,y)1 7
where we define
o= E (x ¢<X)) —+1 (4 2)
WIE,4(x,¢(x)il o ‘

It is well known from the Riemannian geometry of sub-
spaces that the X*  [ef. Eq. (2.7)] are the components
of the unit vectors tangent to the x*-parametric lines,
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in terms of the {X4} coordinates. These are vectors in
M, tangent to E,,. As vectors in E,,, their covariant
derivatives with respect to g-differentiation are

S [ i
PRIV 1+-}7¢'U¢70‘

b
x 'MV*W.

We now calculate the expression for the components of
of the tensor which gives us the second fundamental
form of the embedded space—time (we call it the Gauss
tensor), namely,

y=R,, dx* dx¥,

XA =

riv

4.3)

4.4)

It is well known that, since the {X*} is a Cartesian set,
the Gauss tensor is given by'®

‘quz AXA Y 1 (4'5)
Therefore, using (4.1) and (4. 3), we get
Q = Uﬁuu OQS;H;L (4.6)

754 .
A T :
L+ng,ér VT—ng,, ¢

The trace of the space—time Gauss tensor is, thus,

ot
_ — A YR
Q__g“"Qu =

Y V1 _n¢;x¢” )

5. CONCLUSION; THE ADAPTED COORDINATES
AS HARMONIC COORDINATES

(4.1

We are now in position to prove the connection, stated
in the Introduction, between our adapted coordinates and
the harmonic coordinates, Indeed, the de Donder condi-
tion for harmonic coordinates is

(Zgg),=-V-ggrs}=0. (5.1)

Therefore, according to our previous results, cf. Egs.
(3.2), (3.3), (3.5), and (4.7), we get

(V-gg"),, == omeQ, (5.2)

Let us recall that the necessary and sufficient condition
for a curved space—time (immersed in a five-dimen-
sional space) to be a minimal variety is that the Gauss
tensor be traceless, Thus we conclude: For class 1
space—time, the necessary and sufficient condition for
the adapted coordinates to be harmonic coordinates is
that space~time be a minimal variety, (Clearly so,
since ¢ ,=0 corresponds to Minkowski space—time and
affords a trivial model. ) Incidentally, this fact tells us
that for a minimal class 1 space—time the “fundamental
potential” has to satisfy the equation ¢+ ; =0, i.e.,
the general covariant homogeneous wave equation in the
curved space—time manifold generated by the potential
itself! We wish to note this fact here, although this
paper does not explicitly touch on dynamical questions.

Since the de Donder coordinate condition forms a con-
venient mathematical tool for treating some problems of
general relativity, it is certainly interesting to have a
variational principle, with a clear geometric meaning,
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related to the existence of harmonic coordinates, We
have shown, for those space—time metrics which admit
a five-dimensional embedding, that the de Donder con-
dition is essentially equivalent to the requirement that
curved space—time be a minimal variety, In other
words, this means that the underlying variational prinei-
ple related to harmonic coordinates is that (class 1)
space—~time must be a solution of the corresponding
four ~-dimensional Plateau’s problem.'® How far we can
push this principle into physics we do not know, Let us
remark, however, that a hopeful analogy between the
soap film minimal surface and the geometry involved in
Einstein’s field equations was suggested by Wheeler
some years ago.

To conclude, we wish to mention here that the de-
tailed study of class 1 space—~time deserves some in-
terest in itself for, as is well known, many cosmological
solutions to the Einstein field equations belong to this
class.®
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An approach for evaluating lattice sums is presented, which requires the use of basic hypergeometric
functions. The sum 2(x ,x, + X,x3 + X3x, + X4X; + X,xs5)~° is given as an example.

The motivation for this series of papers® has been
the eventual “exact” evaluation of physically important
three-dimensional lattice sums, principally of the
madelung type. Two, not entirely unrelated, procedures
were given in Papers I and II based on the use of theta
functions and representation theory for integer quadratic
forms, respectively. As a result the evaluation of sev-
eral classes of two-dimensional sums and one three-
dimensional sum was achieved. Since then this work has
been greatly extended by Zucker, ? % who provided the
evaluation of a large number of such sums of high even
dimension and an exhaustive survey of the simpler sums
in two dimensions, In addition, since several of his
sums relate to quadratic forms which lie outside of the
class considered in II, his work holds promise for
yielding new information of value in the theory of num-
bers. The pessimism, then, that Zucker describes re-
lating to the evaluation of new odd-dimensional sums is
discouraging with respect to achieving the initial aims
of this research. The motivation of this paper was to
reexamine our previous approaches to the problem in
order to find a method not subject to the limitation of
known theta—or number—theoretic results. We feel that
some limited progress has been made and describe here
an approach which utilizes the properties of basic hyper-
geometric series. The method will be illustrated by
evaluating a simple five-dimensional lattice sum.

Both the theta function method and the use of number
theory provide nothing more than procedures for con-
structing q-series identities, examples of which are
given in I, Another way of systematically obtaining such
identities is by means of the basic hypergeometric
series. Due to the presence of a number of independent
parameters, these functions appear to offer great po-
tentialities. The basic hypergeometric functions along
with a large number of applications have recently been
described at length in an excellent review by Andrews,*
and the reader is referred there for details.

Let (a),=(1 -a)(1 —aq)---
geometric function is

" n al,...,am;q,z]
by, .oy by,

By extending Andrews’ proof of Heine’s theorem [Eq,
(2.5) of Ref. 4] to one additional parameter (and in ad-
dition using Andrews’ Theorem 2. 6) we obtain the
identity

oo | @ b,05q,2 | _
32[(1,6 ]_

(1 =aq™'). The basic hyper-

2 (31) (az) '°°(a )Zk
o ) ) 00 (@),

(©)=laz)=(b2)= ,

oo | d/c,e/c,25q,¢
@(e)(2). 2[ ]

az, bz

@
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Equation (1) is a generalization of the Thomae formula®
for the ordinary hypergeometric function ;F, to the
basic function. As a particular case we take

z=a=¢q, b=c=E d=e=gqg¢
so that
4,5860,49] _ (E)e(d)e o0 [q,q,q;q,i
3@2[ q&, q¢ ]_(q).‘,(qﬁ).ma2 7, qt ] @

After writing out the sums explicitly and some simpli-
fication, (2) becomes

= [ (&), R - (01N .
Q[wz)n} =155 @), (0, )
However,
(&), 1-¢
(q8), ~ 1-&q
so that (3) reduces to
g’l

after expanding the denominator on the right-hand side
of (4) by the binomial theorem and interchanging the
order of summation, we have

= R 1 & (@ E
Licg =Toil gy imp (%)

Finally, we operate on both sides of (5) with (d/dt)t and
take the limit as £—~ g, As a result, we find
qk
5)

» KL _%
(6)

k+

Pl B =1 (1 - ”)2 (

(both sides have also been multiplied by q to render the
result more symmetric). Equation (6) is a g-series that
apparently has little relationship to a theta function
identity.

o € _pois

-7

The two g-series

® <

Za(2 1) =5 ame,

where 0,(n) denotes the sum of the kth powers of the
divisors of #. Similarly,

> Vq"’:é(idz)q"

R=1 1=l ajn

=% ot
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is the generating function for the sum of the squares of
the divisors of n.

Now we have from (6)

s g
=2 oy k>2( * *1—4«)
"Z:l Loy(n) - noo(n)]q”. (7)

If we now expand the left-hand side of (7) in powers of
g, we find

© k k1 © k « lz*sl
M om (=g ~¢Y) Z:jx %1 SZ:DI T-g7
o e =k
=20 D L 2 tgtrst, (8)
B=l =1 t=1 J=1

Next, we note that {=no, of ways of writing f=u+v,
u=0, v>0, so that we have

s=3 % %

k= us

3
L2

™Ms
s

qk(u*u)*sl (9)

-
»
U
=
(=]
<
il
—

Finally, to eliminate the restriction on the I-sum, we
write k=1+ v to obtain

>

[Ms
i

S — E Z q(l+r)(u*v)+sl. (10)
1=1 y=1 =1 y=0 =1
The sum in (10) is precisely
S=7, R(n)q", (11)

1

=
0

where R(n) is the number of ways of expressing » in
the form

%
—

XXy X, F XX, axg, %200, 000,x
As a result of (7) and (11), we see that
R(n) =0,(n) —noy(n).

Therefore, we have evaluated the five-dimensional
lattice sum:

23 2 (x1x2+x2x3+x3x4+x4xl+x2x5)‘s
xy=20 Xoy s x5=1
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-7 02(”)—7!00("):2 i( 1 _1___)

ns k=1 1\ Bsds™? ks™1gs-1
=£(s)t(s =2) = £3(s - 1),

where ¢ denotes the Riemann zeta function,

(12)

Although we have described an alternative approach
to the evaluation of lattice sums, we are far from pro-
viding an algorithm. Starting from a given sum, it re-
quires a good deal of experimentation to determine a
promising starting point, and even then there is an ele-
ment of luck in the process. The result (12) was found
by tracing backwards through (8) to determine the ¢-
series involved and then relating this to the proper
basic hypergeometric function. It then required some
guesswork before the identity (1) was conjectured. How-
ever, our main point is that odd-dimensional lattice
sums can be obtained independently of our previous re-
sults and that a systematic exploration with the present
procedure may provide new three -dimensional results
of physical interest.

Note added in proof: Professor G. Andrews has in-
formed me that a special case of (1) which includes (3)
has been proven by N. Hall [J. Lond. Math. Soc. 11,
276 (1936)] and that (6) was a conjecture of E.T. Bell.
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Eigenvalues of the invariant operators of the orthogonal and symplectic groups have been obtained in
closed form. All semisimple Lie groups, the unitary, orthogonal, and symplectic groups, are treated
in a systematic way by modifying Perelomov and Popov’s method. The eigenvalues of the invariant
operators for the orthogonal and symplectic groups are then calculated with reference to the unitary

group.

1. INTRODUCTION

The unitary, orthogonal, and symplectic groups have
played an important role in the development of molec-
ular, atomie, nuclear, and elementary particle physics.
Especially essential are the eigenvalues of the invariant
(Casimir) operators of these groups which prescribe
their irreducible representations.

The eigenvalues of the invariant operators (C,) of any
degree p for all Lie groups have been extensively studied
by many authors, and the literature in this area is ex-
tensive. A number of authors obtained formulas for
eigenvalues of the invariant operators of low degrees.
Gel’fand® discussed a system of invariant operators.
Racah® gave the explicit eigenvalues C, for any Lie
groups. Umezawa® treated C, up to p=5 for U(n), Micu*
C, of Sp(4), and Wong® has given recurrence relations
of C, for O(n). Perelomov and Popov®~ first gave the
explicit expressions of the eigenvalues of C, for U(x) in
closed form, and Louck and Louck and Biedenharn®
treated the same subject with a different method. Recent-
ly Hudson® has obtained a similar expression for UQr).
For O(n) Louck'® has obtained a recurrence relation for
the eigenvalues of the invariant operators. Proceeding
in the same manner as the unitary group, Perelomov
and Popov® have also developed a tensor method to cal-
culate the eigenvalues of the invariant operators for O(n)
and Sp{(2n). Although with their method the eigenvalues
C, can be calculated in principle by reducing the problem
to calculating a known matrix (denoted by A) raised to
the pth power, to our knowledge no explicit expressions
of C, in closed form have been obtained.

Gilmore!! has treated briefly the spectrum of Casimir
invariants for the simple classical Lie groups in a uni-
fied manner. The equation he uses is

C(M*) = f(M" +R) - f(R), 1.1)

where f(x) are those terms in the irreducible polynomial
invariant which depend on the diagonal group generators
H; only and R is half the sum of all positive roots of the
algebra. This equation was first quoted from Racah’s
work by Baird and Biedenharn!? in 1964. Baird and
Biedenharn demonstrated that the invariant operators

I, and J, for SU(3) can be obtained from (1.1), and said

1238 Journal of Mathematical Physics, Vol. 16, No. 6, June 1975

further that “Racah has asserted that the result we have
just demonstrated for SU(3) is true in general.” At first
sight, therefore, it would seem that Eq. (1.1) gives the
complete solution to the eigenvalue problem of the in-
variants of all classical groups. However, it was pointed
out by Partensky®® in 1972 that this is not so. Partensky
has explicitly shown that Eq. (1.1) is only true for I, and
and I, invariants of SU(n) and breaks down for higher
order invariants. Furthermore, it is also easy to show
that Eq. (1.1) breaks down for higher order invariants
of the orthogonal and symplectic groups. For example,
it does not work for the eigenvalues I, of O(5) and Sp(4).
Therefore, Eq. (1.1) is not the most general solution
for the eigenvalues of the invariant operators of the
classical groups.

The main purpose of this paper is to present explicit
expressions of the eigenvalues of the invariant operators
for O(n) and Sp(2#n) in closed form. We modify Perelomov
and Popov’s method, treat these groups with reference
to U{n), and add correction terms to the A matrix of
Uln).

In Sec. 2 the generators and invariant operators of
O(N) and Sp(2n) are defined. Our method treats the A
matrix for each O(N) and Sp(2n) with reference to U(N)
by adding correction terms. In order to do this, the A
matrix of U(N) has to be diagonalized. This is carried
out in Sec. 3. We then proceed to modify the A matrix
of O(N) and Sp(2») in Sec. 4 by adding (or subtracting)
another matrix (called F) from the A matrix of U(N).

We then expand (A + F)* in matrix powers of F. The ex-
plicit expressions of the eigenvalues of the invariant
operators are obtained as a sum over four indices.
Examples of 0{4) and Sp(4) are given. In Sec. 5 an al-
ternative method of calculating the eigenvalues is shown
by directly diagonalizing the A matrices of O(N) and
Sp(2n). This method only applies to cases when the value
of n is small. Examples are displayed for the cases of
0(3) and O(4). The results of the present paper are sum-
marized in Sec. 6.

2. GENERATORS AND INVARIANT OPERATORS
OF O(N) AND Sp{(2n)

We use the same generators and invariants as defined
by Perelomov and Popov (Ref. 6b):
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2.1)

where summation over repeated indices is understocd.

i : .
= 1 2,4, 3
Cpﬁxiz Xi3 Xil ’

The generators are subject to the commutation
relations
[, X31=05x{ - 0is
s 8! Xk, = 6%, X}/ for O(N)

€,6,031X%, —€,e,0% X7/ for Sp(2n). 2.2)

For O(N), the generators X! are related to the X,
defined by Racah in Ref. 2b as follows:

Xi=X (2.3)

mi*

X,,; is directly related to the root vectors. They in turn

are connected to the J;; defined by Wong'* as follows:
Xii =Hi =205

X, =-43, X

b~
Xo-a = C‘; (P > q)’

— e — - iE? = -1
.Xq_p——Dp, )<0+¢~ ZE2k+1? XO-p"‘ 1F§k+17

— Be
-D-a_Bi”

(2.4)

The invariants of O(N) are usually written in terms
of J;,. (See, for example, Racah,? Gruber and
O’ Raifeartaigh, '®* and Wong.®) Therefore, at least in
appearance they are different from the invariants given
by (2.1). However, it turns out that the eigenvalues are
the same for both expressions,

The generators of Sp(2n) are those used by Perelomov
and Popov. The relationship between these generators
and the ones defined by Racah (Ref. 2b) has been ex-
plained by Perelomov and Popov in the footnote of their
paper.®

For the group 0(2xn), we also introduce the invariant
operator C! in order to distinguish between the two non-
equivalent spinor representations A, and A_:

C;:EEim...i,,f,,Xim' s X, (2.5)
where TR is the totally antisymmetric tensor. The
eigenvalues of C! have been obtained by Perelomov and
Popov already; so they will not be mentioned further.

3. DIAGONALIZATION OF THE A MATRIX OF
Uln) AND THE EIGENVALUES C, FOR Uln)

We start from the A matrix of U{x) obtained by

Perelomov and Popov:
AN -1 -1 =1
Ay 1. =1

A={A,)= . . . (3.1

0 A

which is an upper triangular matrix with A, in the main
diagonal and -1 at all other positions above the diagonal,
with
XN=m; =i,
In order to apply our method to O(N) and Sp(2n), we
have to diagonalize this matrix. This is carried out in
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the following manner. First, we introduce the charac-

teristic matrix g(x) defined by
g0)=Qr-4), 3.2)

where [ is the unit matrix of order » and its adjoint
matrix defined by

G =(G,; (), 3.3)

where G,;(A) is the cofactor of g;; in ¢. Secondly, G, (x,)
for a specific value of A is written in the form of a pro-
duct of one column matrix (u,,) and one row matrix (v,,)

for k,5=1,...,n, i.e.,
Uy
Uz
U3
G = . (00,0050 < v,,). (3.4)
u

in

Next, we use the vectors (u,,) and (v,,), obtained from
all values of x, to construct the # and v matrices:

(3.5)

With these matrices and their inverse matrices u™*
and v™!, we can show that A can be diagonalized as

U= (uik)’ v=_(v,,).

A=uDw' =y Dy (3.6)

where D is the diagonal matrix with the elements D,,
=20,

The matrices u and v are both upper triangular whose
explicit expressions are

0 for h<k,
3.7
T O,=2-DO 0, -x) forr>r
Voy = { h=i>k 223

0 for p<pk,
where Tl,, 5, (or Tl,,.,,) =1 if 2> j>F (or k> j= k) does
not hold, or h=*k. The inverse matrices «™* and v are

easily obtained from (3.7) and are also upper triangular
matrices:

Thosze O, =2y = 1)

- for h=k
u;,‘, = { nhathk (7\;; - 7\1‘)
0 for <k
. 3.8
n".;ﬂ(x"_h_l) for h=k .8)
v;){:{ nﬁ#/—’fk()th_xj)
0 for h<k

wherell,, ., (0r Tl,,;5,) =1 for h=*%. By means of the
matrix E (E“ =1 for all i and j) introduced by Perelomov
and Popov, the eigenvalues of the invariant operators of
U(n) can be calculated by evaluating Tr(A?E), giving

C,=Tr(AE)= TruDuE)

:i}\P T }_f—_AL__l.

(3.9)
i=l ll“i A _)\/

This result was first obtained by Popov and Perelomov.”
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4. EIGENVALUES OF THE INVARIANT OPERATORS
FOR O(N) AND Sp(2n)

The A matrices for the orthogonal and symplectic
groups of any dimension have been obtained by
Perelomov and Popov. We start by writing down ex-
plicitly the A, ¢, matrix (O or S refers to the orthogonal
or symplectic group respectively) as a sum (or dif-
erence) of A, given by (3.1) in the form of U(N), and a

correction matrix F.
For O0(2n) or SP(2n):
(4.1)
AO(orS) :Ai F’

where the sign + or — refers to 0{2n) or Sp(2n) respec-
tively and

12, nin+l. .. 2n

1 1

2

. 0

[ 1

F=_ 4 (4.2)
0 0
2n

For O(2n) and Sp(2n) our 1, is related to A, of Ref. 6b
(denoted by A;) by

Ri= A mer/n/2umes 1

where
1 fori>0
e,=4 0 fori=0 (4.3)
-1 fori<o0.

For O2n+1): A,=A+F where 4 is given by Eq. (3.1)
with X, =45,

FVi,jenel

12. . . nn+ln+2...20n+1

1

[SC I

n+1
n+2
n+3

i
|
|
|
l
¥
!
¢
|
i

2n+1

We proceed to calculate the eigenvalue of C, by
evaluating

Tr[{A + FPE] for O(N)

L4 =
Tr(A% o5, E) Tr[(A - FPE] for Sp(2n).

(4.5)

In what follows we shall make use of the first expression
of (3.6) only. Expanding (A4 + F) into matrix powers of
F, we get
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b1
(AL FP =Afz 2 AiFAP-i-t
i=0

+terms involving products of two or more F’s

It is shown in the Appendix that terms involving a pro-
duet of two or more F’s are all zero, so that
p=1
(Ax FP=AP+ 7 AIFAP-i-1,

i=0

(4.6)
Making use of (4.5), we have for the eigenvalues of C,:

Tr[(Az FPE]= Tr((uDu")”E
p=1

£25 (uDu‘l)"F(uDu-l)o-mE)
i=0

p-1

=TruD?u'E)+ Tr(u 2 Diu‘lFuD"i‘lu"E) .

4.7

The first term on the right-hand side of (4.7) is equal
to

S ey A =1
=1 i/;&i A —)\j

b

which is similar to U(N) except for the values of i,
where N=2xn for Sp(2n). The second term is the correc-
tion term to U(N), so that the eigenvalues of the invariant
operators for O(N) and Sp(2r) can be obtained by evaluat-
ing this term.

Calculation of the correction term

It is convenient to treat 0(2n) and Sp(2x) together, and
0(2n +1) separately. The quantities for O(@2n + 1) will be
denoted by the bracket [+1]. The calculation will be
divided into four steps by evaluating separately (1) K
=u'E, (2) B=Yi Dy FuD?*~*"* | (3) BK, and finally (4)
Tr{uBK).

(1) K=u'E
From the explicit expression of u,, given by (3.7), it

follows that

wE),, = 0y=x-1/ M

2nl+11= 471

0 =2)=K,, (4.8)

T
2nl+l]2 1
which is independent of the second index j, i.e., each
column has the same elements.,

(2) u'Fu

Making use of Egs. (3.7), (4.2), and (4.4), we
obtain

R
a0 3 7) . :,Z;"; 4.9)

1
,n-j+1un-n' yn+klsl]

fort<snand1<k<n.

(3) BK
With the help of the results (4.8) and (4.9), we have

p-1
(BK);, = {;:’ 7\:
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nok
xlg jzﬂ‘{u n-jq-lun-f/,n-fk[-rl)Kn-rkhl])‘n#k[*l]
n -3
Meptarr =28
w1 go1 n'.l*l n+d oneklsd] n‘k[’llxm»k[#ll At (4-10)
for 1 < (t, k) <n where we have used the relation
p-1 I
Mherlar) — At
Z)J)\""}l = (4.11)
im0 t “neplsl) xmkhll - At
(4) Tr(uBK)
The correction term becomes
2 Muptsiy— M
TrwBK)= 2. 2oust u el 2
( poitel Tt s tyn=+1%n+g  neplel] Xpanlen] = As
o Mznts13 1501011 g a1 = 24 = 1) ) (4.12)

nZn[#l])j#n*k[#l](hnfk[m” - Aj
With the correction term expressed in terms of the
A,’s we obtain from (4.5) and (4.12) the eigenvalues of
the invariant operators of any degree p for O{2n), Sp(2n),
and O(2n +1):

2nl+1] n

-1
C =2 A’TI £ 2 u
=1 g# 7« -7\ pikatsl TE
X E wl >t‘r’wg(,u - )\g

ton=+1%neg o nerlall Mperlor) — N¢

X-n2n[+1]zj>n0k[+ll (>\n+k[¢1] - >‘f - 1), (4.13)

2pl+11= s2nsklel] (xmkhl] - >‘j)
where u,, is given by (3.7). The eigenvalues of the in-
variant operators of any degree p have thus been cast in
closed form in terms of the A,’s. Although in (4.13) each
term is a fractional function of the x,’s, the C, is even-
tually expressible as a polynomial of the x,’s

As an illustration of the expression (4.13) let us
evaluate the eigenvalues C, (p=4) for O(4) and Sp(4). In
this case (# =2) we choose the + (or —) sign for 0(4)
[or Sp(4)] in (4.13) without the brackets.

The first term of (4.13) is readily evaluated, giving
4
T TI ! )
i=1 j#t K- hd )\’

= 4 1—
7\1< ")\2>

+>L4<1—

(-
)( 17\3)(132;4)
=) ) (e

1 1 1
+ 4 - —_ 1-—- ° 4914
"“(1 m—m)(l >\4-7\2>( 7\4—>t3> (4.14)

It is convenient to use the [,’s, rather than the m,’s.
The ,’s are related to the /,’s as follows:

—

+ad (1—

For O(4):

M==ltl, ==+, =L, =Lt

For Sp{4):

N==0+2, dp=—=0+2, X3=4L+2, X, =1+2.
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Substituting the above values of the ,’s into Eq.
{(4.14) and rearranging terms, we have the first term of
(4.13):

21 + 208 — 412 - 412 for 0(4)

.1
214+ 203 + 1212+ 122 - 40 for Sp(4). #.15)
The correction term in (4.13) becomes
AL =
TrwBK) =u,,u;tu, K, 42—
Ag—Ay
R - A] A -G
Uy Uyt K Y - oy U UK, Xa— N,
-1 &%;&é_ iy g MmN
BTN Xs = X BT WY
2
)‘3 - )\2 _ 7\9 - )‘2
+ Upatlzgtt oK s + oy Ungtte Ky VSV
(4.16)
From (4.8) the column matrix K is given by
Wy =y — 1)(7\1 —Ag— 1)()\1 —As = 1)
Oy =200 =)0 =2p)
Po=2 =10, -2, —1)
O =20 =250, =2y)
K, = . (4.17)
Pg=2,=1)
(7\3 - 7\1)0‘3 - 7‘2)(7\3 - )\4)
1
O =20 =250 =2 y)
With the help of the substitutions of (3.7), (3.8), and

(4.17) into (4.16), the correction term can easily be
calculated in terms of the x,’s:

-] (1_ 1 >
7\4 AL 0\4_)\3)(}‘2")\1)
+x§—x;’ Ag—r,—1
Az =2y (Kz_xl)(hs")\q)

el S N D)
+3—-2 (] -

Xz =Xy (g =)y = 2y)
=) 0 =2 )0 =2y)

TruBK) =

(4.18)

When expressed in terms of the l,’s, the correction
terms become

20 + 212
612 + 612+ 24 for Sp4).

Substituting the results of (4.15) and (4.19) into (4.13),
we obtain the eigenvalues C,:

21+ 278 ~ 272 — 22
ST \2r 4 208+ 62 + 612 -

for 0(4)
4.19)

for 0O(4)

64 for Sp(4) (4.20

The above results agree with those given by Perelomov
and Popov [Ref. 6b, Egs. (20) and (28)].

5. AN ALTERNATIVE METHOD FOR SMALL

For O(n) and Sp(2n) with small values of n, we may
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directly diagonalize the matrix A, s,. Although this
method cannot be easily generalized to any dimension,

it still merits to be displayed. We shall consider the
examples of 0O(3) and O(4) and give only the results for
the «’ and »’** matrices which diagonalize the A, matrix.

For 0(3):

-J-10
Ao=| 0 1 -1 |=wbu, (5.1)
0 0J+1
where
T+1)J+1) 2J+1 1
0 J 11, (5.2)
0 0 1
- 1
u :m
Jd -(@2J+1) J+1
x| 0 G+1)@I+1) —~(+1)2J+1) (5.3)
0 0 JW+1)(2J+1)
For O(4):
~myt+t1 =1 =1 0
U e | (5.4)
0 0 m+2 -1
0 0 0 m,+1
where
2myab  —-2my,a - 2m,b - 2m,
u': 0 —{(2m,+2)a 0 - (2m, +2) ’ (5.5')
0 0 -@2m, +2)b 2m, +2
0 0 0 2m,
11 1 1
w- 00 0D (5.6)
00-a —a
00 0 —ab

Here we have used the abbreviations a=m, +m,+1, b
=My =M, +1 .

Since the A, ¢, has been diagonalized, the eigenvalues
are given by

C, =Tr( DPu'"'E).

The problem reduces to the evaluation of this trace.

6. CONCLUSION

We have modified Perelomov and Popov’s method to
calculate the eigenvalues of the invariant operators for
O(N) and Sp(2n). The A, ., matrix of O(N) or Sp(2n)
are diagonalized with reference to that of U(N) and the
correction terms are shown to include only those terms
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linear in F, By calculating the correction terms, toge-
ther with the results of U{N), the eigenvalues of the
invariant operators for the orthogonal and symplectic
groups of any degree p have been obtained in closed form
in (4.13) as a sum over four indices. Examples of 0(4)
and Sp(4) are explicitly shown. An alternative method
for calculating the eigenvalues of C, for small values of
n have also been presented. Examples are given for

O(3) and 0(4).

Since the eigenvalues C, of SO(z,1) may be evaluated
as a special case of SO{(n +1),'° the present method also
provides the eigenvalues of the invariant operators for
SOn,1).

APPENDIX

In this Appendix we show that any term in the expan-
sion (Ax F) involving two or more F’s must be zero,
First A is an upper triangular matrix; therefore, A" is
also an upper triangular matrix, where » is any positive
integer. Next F is a matrix which has nonzero elements
only in the “first quadrant.” We shall denote a matrix
with nonzero matrix elements only in the first quadrant
a @ matrix. Thus

FA=Q,, (A1)
AF=Q,, (A2)
FA"=@q,, (A3)
AF=g,, (A4)

where the @, are all @ matrices. But
Q,Q,=0 (A5)

Hence, the proof; since any term in the expansion of
(A£ FY involving two or more F’s must be of the form
QiQJ, which is a zero matrix.
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A Goursat problem for the fourth moment equation*

M. N. Oguztéreli

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G!

(Received 15 July 1974)

The solution of 2 Goursat problem for the pseudoparabolic equation satisfied by the fourth statistical
moment of an initially plane wave propagating in a random medium is presented, using an
integro~differential equation technique. Two-dimensional propagations are considered.

i. FORMULATION OF THE PROBLEM

Since 1960, a number of contributions have been
devoted to the study of the fourth statistical moment of
a scalar wave propagating in a random medium
(cf. Refs. 1—18).

Following Brown, % we shall denote by / the fourth
moment of an initially plane wave. Let §, £,, and &
be the dimensionless variables, and y the parameter
which are introduced by Brown. He has shown that
I=1(t,, &, ¢;y) satisfies the pseudoparabolic partial
differential equation

o ~ivELgl - Pl 1)

where i =v=1, v, denotes the gradient with respect to
£, and F=F{(¢,, &5 v) is a known function defined by
Eqs. (26)—(27) below,

In two dimensions, Eq. (1) becomes

o, 2%
ETSRCT TN

where, for simplicity, we do not indicate the obvious
dependence of F and  on y. In this case, the “basic
problem” for the fourth moment equation consists of
the finding a function I(£,, &4, £) which satisfies Eq. (2)
in the region —~ o <, £y <, >0, the “initial
condition”

](gou 555 0):1 (3)

= F(E,, )] 2)

and the conditions

exp(- ¢D(£y)],

Ea_.oo’
l(gm gB’ g) —.{exp[— ED(ga)]’ (4)

£ — o,

where D is a given function defined by Eq. (27) below.
It is very unfortunate that the treatments in the Refs,
1—18 for the solution of the basic problem are not very
satisfactory in the analytical point of view.

Brown, % solving the basic problem (2)—(4) numeri-
cally, has plotted the functions

07 =10,0,8)~1, C,=[Ig,,0,¢)-1]/0f, 5

where 0% is the variance of irradiance scintillations
and C; is the covariance function of irradiance normal-
ized by variance. Clearly, Brown’s method can also be
used for the computation of the covariance function

C,=110, &, ©) = 1)/0% ®)

The irradiance scintillations 0% and the covariance
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functions of the irradiance scintillations, C;and € I
are measurable, In this work, using these functions,
we made an attempt to find the fourth moment I(£,, &, &)
provided that they are measured with sufficient ac-
curacy in the ¢ direction. Thus, instead of dealing with
the solution of the basic problem for the fourth moment
equation (2), we investigate the solution of the asso-
ciated Goursat problem which consists of the finding

of a solution of Eq. (2) satisfying the conditions (5) and
(6) for given sufficiently smooth 0%, C,, and C,. To
simplify our presentation, we reformulate the same
Goursat problem in the following more general form
using different notation:

Find a solution of the partial differential equation

du . 2u

Bu _ - 7
5z Caxay (™)

for (x,vy,z)€/), satisfying the conditions
ulx:O:p) u’y:(]:qf ulx:y:OZVy (8)

where
w=u{x,v,2) is the unknown function,
V2 :{(x,y,z){ ‘x) <a, !y{ <b, 220}
f=f(x,y) is a given function continuous in
={e,llxl <e, |yl <b},
p=p(y,2), q=qlx,2), v=7@)
are given functions continuous in /).

We assume that p(0, z) =¢(0, z) =7(z) and the function
g=8x,y,2)=p(y,2) +qx,2) - 7(z) (9)

admits a continuous partial derivative azg/ax dy, and is
analytic with respect to 2z, such that

g
az®

<M (£=0,1,2,-++) (10)

for (x,y,z)€/), where M is a positive constant.

For example, if 0<x,<1 and if the series
Yoo 1&alx, ¥)] (< M) and 3oy | 8%¢,/0x 2y are uniformly
convergent in £, then the function

glx,y,2)= Zm/; exp(— \z2)g,(x,v) (11)

satisfies the above conditions.

Note that, by virtue of Brown’s results on ¢%, Cj,
and C,, Eqs. (5) and (6), and by Egs. (3) and (8), we
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have the relationships

_ qlx,z) = 5 _b0,z)-1
021—1’(2)—1, ct’ ’V(Z)— ’ I‘m

{12}

n(0Y=1, limgq(x,z)=limp(y,2)=1, limwr(z)=2.
x - y=o il

1. SOLUTION

Now, supposing that the Goursat problem (7)—(8)
admits a solution u =u(x, ¥, z), let us integrate Eq. (7)
with respect to x from 0 to x, and with respect to ¥ from
0 to v. Then putting

G-~ [ f (et n, 21+ 2452 ) acan
13)

and using Egs. (8) and (9), we find the integro-differen-

tial equation

u=g+Ju. (14}
Conversely, we can easily verify that any solution of
Eq. (14), which is continuous in /) with a continuous
partial derivative with respect to z, is also a solution
of Egs. (7)—(8); i.e., the solution of the initial value
problem (7)—(8) is equivalent to the solution of Eq. (14).

The formal solution of Eq. (14) is of the form
u=2, 7. (15)
n=0

We now show that this formal solution is the actual
solution of Eq. (14). Indeed, since

ak
S (78)(x,3,2)]

:-ifoxfo”(ﬂg, el

we have, by virtue of the inequalities (10),

¥ {t, n, 2

8
73-2%’ ME;[?Z (=0,1,2,++), (16)
where
9:1+nkax[f(x,y)[. am

Further, we have

¥ 3
o [(T7g)(x,y,2)]

. x v ak e
i f [ (a5t

ak+1 .
+ 1 (T78) (g, 2)]>d§dn.

We can easily prove, by the mathematical induction,
that

ok (Bxy)”
Lg ] Y ::')2

Since the series in (15) is dominated by the series

(k,n=0,1,2,---). (18)

. .
M2 (7%)2— = MJ, (24 8xy), (19)

where J; is the first kind Bessel function of order zero,
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the series in (15) is absolutely and uniformly convergent

in /), and its sum is the actual solution of Eq. (14), as
asserted. The asymptotic relationship
Ji
J,(2iV305y ) ~ exp(2v6xy) (20)

V7 Voxy

for large lxv|, gives an important limitation for the
growth of the solution of Eq. (14).

Now, to compute the successive iterates of g more
efficiently, we put

T7g=(=1) ;gfg’f'ﬂmex,y; £n)
X[f(&, MGry (£, 7, 2) + GylE, m, 2))dE dn, 21
where
Gle,y,2)= TEGDE) oog,1 9,00, (22)

Then, we easily verify that
‘rwi.i(x’y; 5)77):1 M2 l(x y'E,T))zfxfyf ‘E’ ')di'dﬂ',

f f M(,1(€ 777 E,fl)di dT] 9

M, 1 (%, y; E,n)=f, f,, FE, )My, 1 (&7, 15 &, m) dE" dn’,
My, 95 6,m) = [ [ A&, 1My, o (87,07 £, m)
+M,, (&', 1'; &, m)] A’ dn,

_ ) Y,
M3,3<x,y;£,n)=(x—2!ﬂ(i2‘!’")-

x y
:f / My o', 5 &, m)dE dn'.
4 n

In general, we have the recurrence relations:

Mugiy 16,95 6,0 = f, A 0 WMo (8, 07 £, m) A8’
My, o 0,95 6,m = J, [ LA )My (8" 0" £, )
Myt (8', 05 E,mdE dy’, (R=2,8,...,n0),
(23)

My o(x,9; &, )=

'y
Moty ma (6,3 E,m) = [ 7 My 67, 07; £,m) a8’ iy,

* which can be demonstrated by the mathematical induc-

tion, Clearly, all M, ,’s are real. Accordingly, we have

ulr,v,2)= 2 (7"8), )

:Go(x,y,z)+ &4 k( i) f f i ﬂvk(x’y &n )

X[f(&, MGy (E,m, 2) + GylE,m, 2)dEdn

or, putting

T, (x,y; £,1) = Z) "M, y;8,m) (B=1,2,8,++),

(24)

we obtain the formula
“ x
2 Jy Jy Talx,y56,m)

X[f(gx U)GM(&, U,Z)+Gk(5, n,z)]dEdﬂ- (25)

Thus, if the function g(x,y, z) satisfies the conditions

ulx,y,2)=Gy(x,y,z) +
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(10), then the solution of the initial value problem (7)—
{8) is given by the formula (25).

1. DISCUSSION

According to Brown, * the function F in Eq. (1) is of
the form

F(Ea’ ‘sB’ 7) :DS(Eaa 7) +DS(€B: 'Y) - 0. 5[Ds(ga+ gg, '}/)

+DS(gu—' £B9 '}’)], (26)
where
2,91£%73 it L, is infinite,
Dg{t,y)= 5
’ 3 (88K e\ o, e
2,61£5/3 (— — 8IS ) it L s finite.
5 2°"8T 1 /6 0
1)

Here L, is the outer scale of turbulence and Ky 4 is the
modified Bessel function of order 5/6.

Clearly F [and consequently f in Eq. (7)] presents
singularities for £,=0, £=0, £,F£,=0 (x=0,y=0,
x¥y=0), and for £,=£z== (x=y=c0), Note that F and f
are continuous in any compact domain,

Although f is continuous and bounded in the domain
R, its successive derivatives are not continuous. For
this reason we avoided from the successive derivatives
of f in our analysis.

Further, let us remark that the constant A7 in (10)
can be replaced by a function of z, say M=M(g),
continous and bounded in D, without affecting absolute
and uniform convergence of the series (15).

In a forthcoming paper we present the solution of the
corresponding initial value problem for the more gen-
eral equation (1).
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Racah coefficients of the Poincaré group are defined and compared with the rotation group. It is
then shown how they arise in a natural manner in the inelastic unitarity equations and in crossing

multiparticle amplitudes.

. INTRODUCTION

While the use of Racah coefficients is well known in
problems in atomic and nuclear physics,® the cor-
responding coefficients for relativistic systems arising
from the Poincaré group are not so well known,? in part
because they are more complicated and in part because
the need has not arisen. The Racah coefficients for the
rotation group arise when angular momenta are coupled
together in different sequences to form an overall angu-
lar momentum state. Corresponding coefficients for the
Poincaré group can be defined in a similar fashion. In
this paper we will discuss another way of defining the
Racah coefficients of the Poincaré group and show how
this definition can be used in analyzing the inelastic
unitarity equations,®* and in crossing multiparticle am-
plitudes.® We make use of the fact that it is possible to
construct multiparticle states of the Poincaré group
which are not formed through a sequential or stepwise
process in which one state after another is tacked on to
the previously coupled states.®® How this is done is dis-
cussed in Sec. II. But given such a possibility it is clear
that one can single out these “symmetrically” coupled
multiparticle states as standards, defining the Racah
coefficients as those coefficients which carry the stan-
dard states to the sequential states and vice versa. Pro-
ducts of such coefficients then give the conventionally
defined Racah coefficients of the Poincaré group.

Now while the possibility of defining such coefficients
may be interesting mathematically, there is no intrinsic
reason to prefer one type of Racah coefficient over ano-
ther. The type of coefficient that one uses is always re-
lated to the physical problem at hand. For example, if
one is analyzing cascade decay processes the sequential
or stepwise type of coupling would presumably be pre-

ferred. Therefore, after having discussed the mathemat-

ical properties of Racah coefficients of the Poincaré
group in Sec. II, Sec. III will show how the symmetrical
type coefficients arise naturally in the inelastic unitarity
equations, while Sec. IV will show how they are used in
crossing multiparticle amplitudes.

It should be pointed out that the natural mathematical
context in which to discuss these coefficients involves
distribution theory;” distribution theory is needed be-
cause the Poincaré group is noncompact and its basis
states nonnormalizable so that the attendant Clebsch—
Gordan coefficients and their generalizations are in
general distributions. Nevertheless, there are several
reasons why distribution theory will not be used in this
paper. Firstly, the machinery of distribution theory is
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sufficiently cumbersome as to hide the simple steps that
are needed to derive the Racah coefficients. More im-
portantly, the final result involves only Wigner 0(3) /)
functions, which are well-defined functions and not dis-
tributions. We thus leave undone the exercise of express-
ing all relevant quantities in their proper mathematical
context.

ti. RACAH COEFFICIENTS OF THE POINCARE
GROUP

To contrast the way in which the “symmetric” Racah
coefficients of the Poincaré group will be defined with
the more familiar definition, it is useful to begin with
a brief discussion of the rotation group.! Labeling
states of the rotation group as |[J |Jm), where J is the
angular momentum and m the spin projection, we con-
sider the tensor product of three representations J, ®J,
® J,. This can be written

| [0y [Tl [slmy)
Ty Jy
:;}n m my my my || [T nd,J,d9).
n

To determine the degeneracy parameter 7, one couples
these states in a stepwise fashion, one possibility being

(I.1)

[, Jmy; [, )my)
:j 2 <j12m12|J1”71J2m2> | [j1z]m12;J1Jz>:
12M12
I[J1]m1§ [Jz]mz; [Js]m3> :j %; <j12m12;J1m1J2m2>
X ’ [j1z]m1z§J1Jz>l[J3]m3>

=, é; 2(]'121%12 | Jimydymy)
12™12 Jm
X{Jm ’j12m12J3m3> ’ [T]m; Frzd1 oy -
(1I1.2)

Comparing Eqs. (II.1) and (I.2) we see that the degen-
eracy parameter n is j;, and

J J, Jd, J,
7'” my my My :,nZ: <j12m1zlJ1m1J2m2><Jm ’j12m12J3m3>‘
J12 12

(11.3)

But there is no reason that, for example, states 2 and
3 could not have been coupled first, and then 1; Eqgs.
(II.1) and (II.2) would then yield
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J g, J,
m ny my Mg :"}; (j23m23[szngm.SXJm]j%mJlml) .
]'23 23

(I1.4)

Since in the tensor product space one basis is equivalent
to another, there must be operators which transform one
coupling scheme to another. That is,

B I,y d .
) [J]7ny]12J1J2J3> :é {J; JZJ:;}I {J]”2§J23J1J2J3>
where {} are the Racah coefficients.’

A similar procedure has been carried out for the
Poincaré group.? Instead of states |{J[m) we now have
states | [MJ]pd), where M and J are the mass and spin of
a particle and p and 0 are the momentum and spin pro-
jection. For simplicity we will assume that the spins of
all particles are zero. This makes the analysis much
easier to follow; further, the generalization to arbitrary
spin is not difficult and is carried out in Ref. 3. Pro-
ceeding as was done for the rotation group, one consi-
ders the tensor product of states | [M,Ip,)| [M,]p,) | [M,]oo)
and writes

MJ M, M, M,
I[Mllpl;[MZ]pz;[Ms]pQ:i PO b, P, Py
o

x| [MJlponM MM,y (IL.5)

where 7 again refers to the degeneracy parameters. The
symbol ¥ allows for the possibility of a summation or
integration over the relevant variables. Now momentum
conservation dictates that p=p, +p, +p,, while energy
conservation says Vs =v(p, ¥ p, + p,)?, where p, =(E,,D,)
with p? =M? is a 4-vector and J, ¢ are the spin and spin
projections of the multiparticle. Thus there is really a
summation or integration only over the parameters J, 0,
and 7 in Eq. (II.5). The degeneracy parameters can be
computed in exactly the same way as was done for the
angular momentum states; first it is necessary to couple
two single particle states:

Vo (M,lpy) = T (@4, + DM RUB, (12CM)]
j12%12 1

x ’ [szjlz]pl + Py, 0455 M M) (I1.6)

where R[p,(12CM)]=R(¢, 6,0) designates the azimuthal
and polar angles of particle 1 in the 1-2 CM frame.
Equation (II.6) can be derived in many ways.%® Perhaps
the simplest way is to introduce the projection operator
[ dR)Z . (R) U(R), [where U(R) is the unitary operator
representing the rotation R} for it will be used later
when three-particle states are discussed. Thus, consi-
der the two-particle state in its rest frame, which is

the 1-2 CM frame:

| [s2dialp =0, 0, M, M) = [ dR[$,(12 CM)]
X[ila{ R p,12CM) T}
*WR[p,(12CMTH [p,|2; - [p,[2).

Here the single-particle states are oriented along the z
axis; the rotation R[,(12CM)] carries them to the con-
figuration p, and —p,. Then using the orthogonality
properties of the Wigner /) functions gives Eq. {II.6).

(I1.7)
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By making use of Eq. (II.6) a second time it is possi-
ble to compute the stepwise coupled three-particle state
which gives the analog of Eq, (II.2):

‘ [M1]91§ [%]pz§ [Ms]p3>

= 2o @, +1V%'2 IR[5 (12CcM)T

j1a912 a120

x ’ [S1zj1z]p1 + Do Opp; My My) ’ [Ms]p3>

= 20 (2j, +1)H2(2J +1)1/2
J12%12
Jo

X2 R b 12 CMIDL oy [RGBS)]
X0 SR pa2CMIT

X ’ [sd]p, o, J12972S 12, MMMy (Ir.8)

where s = (p, +p, +p,)? is the invariant mass and R(p,)
the rotation associated with the polar and aximuthal
angles of particle 3 in the overall CM frame.

From Eq. (II.8) it is seen that n={0/,, j;,, S, SO that

[sd] M, M, M,
po p, P, P
n

= 22 @, + 127+ DY)

0404
112912 T2

(R(p,)]

xygﬁo{fe-l[;;g(lz cM)IR[ p,(12CM)}.
(11.9)

Vs, =V(p, *p,)? is seen to be the invariant mass of the
two-particle system, while j,, and o/, are the spin and
spin projection, that is the intermediate angular mo-
mentum, of the 1 -2 system. It is to be noted that
though the coupling coefficients Eq. (II.9) have been
evaluated in the overall CM frame, the same result
holds in any other frame.?®

Finally, as with the angular momentum states, there
is no reason for having coupled particles 1 and 2 first;
if particles 2 and 3 had been coupled first a result
analogous to Eq. (II.9) would result with suitably per-
muted labels. To compute the Racah coefficients one
finally writes

; M, M, (j,0 S12)
' [sJ]po; .712012312> = i { . 2z
JogaMas M (s9) (Jz3%35523)

X ‘ [sdlpo; J23%23523) -

The actual coefficients {} contain products of /} functions
involving rotations in the 12, 23, and overall CM
frames; it can be shown that all these rotations are (in
general complicated) functions of the subenergies s,,,
Sgq, and Sp,.

(I1.10)

Now while it is seen that the coefficients defined in
Eq. (II.10) are indeed the analog of the Racah coeffi-
cients of the rotation group, it is nevertheless desirable
to find a set of variables which are more closely linked
to quantities accessible to experiment. Except for cas-
cade decay processes one usually does not detect the
intermediate orbital angular momentum in a reaction,
so it is desirable to eliminate such quantities (and their
attendant spin projections).
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To do so one introduces the generalization of the
Omnes variables,®® in which the three degeneracy
parameters of a three-particle state are chosen to be
two subenergies and a spin projection along a body-fixed
axis specified by the three particles. Such a set of
variables is most simply obtained by applying the pro-
jection operator defined earlier on a three-particle state
in its CM frame:

I [sJlp=0,0; MS,,S,53) :f dR,OL‘,’::, (R)

x| [M,]p,; [M,]Ip,; [M,]p,) (. 11)
with inverse
[ [M,]p,; (M, ]p,; [M,lp) =20 @7 + 1)/ %! (R)
[[sJIp =0, 0; Ms,8,,); (Ir.12)

here R is a rotation from an observer’s (or space fixed
or double coset) frame to the body-fixed frame (bf),
fixed by the three particles. Notice that Eq. (II.11) de-
fines a three-particle state that is symmetric with re-
spect to all three particles and hence contains no inter-
mediate angular momentum labels. One may object that
$), and s,, single out a choice of particles, but this is
not the case since s, is determined from s, s,,, and s,,
by energy—momentum conservation, that is, s;, +s,,
tsy3=s+ M+ MG+ M.

Given Egs. (1I.11) and (I1.12), we are in a position to
define a new type of Racah coefficient for the Poincaré
group, one which singles out one type of coupling (the
symmetric coupling) and refers all other types of coupl-
ings to it as a standard. For starting with Eq. {II.11),
we make use of the stepwise coupled scheme of Eq.
(I1.8) and the orthogonality relations of the Wigner /)
functions:

’ [sJ]po; MS1,8,p
£ 3

:f dRDc{.M(R) l [M1]p1; [Mz]pz; [MS]p:;)

=[ RO (R) T @+ 10207 1)1

J12912

X U [RGIE AR 3,12 CMIIRL 3,12 CMO]
X ’ [SJ]po'; 013 12512

L 4R

JloloM

112012

X (2,5 + 1P/ 2@ + 1V 32 IR 5,12 CM)]

Il

v RO yu (R, {RI 5000

X R[51(12 cM)]} [ {sdlpo; J12%12512)
=, @i+ 00 [RIP OO

x D02 { R p,(12 CM)IR[ b, (12 CM) T}

a12

X l [sJlpo; Oz 125120 - (11.13)
R[ p,(bf)] is the rotation associated with the polar and

azimuthal angles of particle 3 in the body-fixed frame.

Use has been made of the group properties of rotations
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to write R(p;) =RR[ p,(bf)]. Further, R"}[5,(12CM)]
XR[ $,(12 CM)] can be written as R,R [6,,,)] R, where
6132, is the angle between particles 1—3 in the 12 CM
system and R,, R are z axis rotations that all cancel
out in the final result. Quite generally the notation used
is to specify polar angles as 6,,,,, which means the
angle between vectors i and j evaluated in the frame
where p, +p, =0. Equation (II.13) becomes

| [s71p0; Ms 55,5 :E 27 + 1)1/20;.012{12[133(&)]}
912

x df;iio[cos 913(12)” [sJlpo; 032512812 -
(I1.14)

What remains is to compute the inverse of the Racah
coefficient, Eq. (II.14), for then any stepwise coupled
scheme can be transformed to any other stepwise
coupled scheme by using the symmetrically coupled
state as an intermediary. To compute the inverse it is
convenient to change variables from s,,, s,, 0 s,,,
cos#f ,,,, since this angle appears explicitly in the d'e
function of Eq. (II.14). Now s,, =M%+ M2 +2(E, E,

- p.p,c086,,), so it is clear, when evaluated in the {12)
frame, that kinematics alone determines the change of
variables. Note that E, and E,, when evaluated in the
(12) frame, are functions of only s,, and s. Then if both
sides of Eq. (II.14) are multiplied by the inverse of

D4 0,,[RB5)] and if di12,[cos 6, ;)] is integrated over

€08 6,44,,, making use of the orthogonality properties
of the d7 functions, we obtain the final result:

I [sJlpo; Ms,,co86,, (12)>

=2 @jie + DM, [5oo0)]
Y12
Iz

X d{;i;o[cos 6132 )” [sd]po; 0125125120 s

) 1 +1 . i
' [SJ]p°§ 015 J12512) :z_f dcos 913(12)%;0:12,;4[?3(“)] !

-1
x dﬁ}go{ws 6132l

x |[sJIpo; Ms,, cos6,; 5,0 (Ir.15)

til. APPLICATION OF THE RACAH COEFFICIENTS
TO THE INELASTIC UNITARY EQUATIONS

It is clear that the Racah coefficients obtained in Egs.
(I1.15) will be useful when one wishes to convert from a
stepwise coupled scheme to a symmetric scheme and
vice versa, Such a situation arises in the inelastic uni-
tarity equations. This can be most readily seen by writ-
ing the unitarity equation, 2Im7 =7/, where 7 is the
reaction operator, in terms of bubble diagrams.® For
simplicity we will consider only three-particle initial
and final states. Then one term in the unitarity equation
comes from a three-particle intermediate state:

2ieoitinal |7 *|inter)(inter |7 |initial)

inter

3 3 3
:fﬂa% 925 (179737 |71 123X123| 7| 172/37)
E]_ Ez E3

= J' dpdR T (sy5,8,5) dsy, ds,5{17273" | 71|123)

x(123|7 |12:37). (m.1)
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Here the three inijtial particles are labeled by primes,
the intermediate particles are unprimed, while the final
particles are labeled with “double primes.” When the
integration f dR and energy—momentum delta functions
are extracted there results two partial wave amplitudes,
suitably integrated and summed over intermediate parti-
cle labels®:

?f 9 (312’ 313) dsm dslaiqfina.l‘inter* (SJ, 312313M;S;’23313M”)
x}qinitiu*inter(SJ;SIZSISM;S{2313M;). (HI.2)

9() is a relativistically invariant Jacobian resulting
from the change of variables in Eq. (III.1) and 4() is
the partial wave amplitude of the appropriate reaction.

Now in (III.2) all particles are treated on an equal
footing. This is to be contrasted with another term that
occurs in the inelastic unitarity equation, in which
particle 3’ does not interact with 1’ and 2/, but interacts
with intermediate particles 1 and 2. Such a term re-
sults from a disconnected diagram in one amplitude and
is written
(final|7*|inter)(inter |7, | initial)

inter
:f@_zﬁli %%(1"2"3"V*i123><121712\1’2'><3?3'>

(II1.3)

Here all the intermediate particles hooking on to the 7t
matrix element are again coupled together in a sym-
metric fashion; but in the other matrix element, labeled
7 1. meaning the only particles 1 and 2 interact, the third
particle is not symmetrically coupled to the other two.
{313") gives a 3-momentum delta function which guaran-
tees that particle 3’ remains unchanged in direction and
energy in going from the initial to the intermediate state.
By again making a change of variables, from p,,p,,p, to
R, p,, and S, S,5, with measure [ dRdp§ ds,, ds,s,

and then extracting the energy—momentum delta func-
tion and rotation to give partial wave amplitudes, one
obtains

2 G ds,, ds oAt et~ inter* (ST; S12515M; SiaSTsM")
M
X{[sJ1p0; Ms 5,417 12 | [sTTDO; M7 57,515 (n1.4)

But 7 ,, operates only on the two-particle subspace of the
total three-particle space. Therefore, we use the Racah
coefficients, Eqs. (II.15), to insert three-particle states
in which particles 1,2 and 1’,2’ are coupled first, and
then coupled to particles 3 and 3/, respectively. Thus

([SJ]IW; Ms;5Sy3 ‘712 I[SJ]pU', M's{,slg
= 2 {@ip +1)@j, + /25% ., [ pelbD)]
FETYATY 12
012082
x dj1z[cos b4 ¢,)]
X{[sd1p0; 0,5 j15S12 I7_12 ! (sdlpo; oy iasta)

X Diroq D5(05)] d izo[cos N (111.5)

= 20 @rp + Ve, [ Do D1 [ BoloE)]
J12
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]
X doi'go[cos Oz ez

X déigo[cos Oraazy AT TE 1 (81, i2)0(sy, = 51,)  (WII.5)

where A'**"**%(s,, j,,) is the partial wave amplitude for
the 1’ + 2’ —1 + 2 reaction, with s, the energy of this
reaction and j,, the angular momentum. When (II1.5) is
combined with (ITI.4) the expression for this term in
the inelastic unitarity equation becomes

- *
?r Jdsyyds At s tnter™ (s s 05, M ST, 1M")

X 23 o + Ve, [ 5 OD DG, [ Bs(o0)]

12
J12
U12

x dé{%o[cos Bose rary]

X dZizo[cos 913(12)]741'2'- (5125 f12)0 (812 = 515)- (1. 6)
If the body-fixed (bf) frame is chosen so that particle 3
(particle 3’) points along the z axis, then both of the /)7
functions collapse to Kronecker deltas. Of course such
a choice is only possible for one of the three discon-
conected terms. There will in general be three terms
like (III.6) in the unitarity equation, corresponding to
particles 1,2, or 3 not interacting with the other two
particles. For particle 3 (particle 3’) along the z axis
(z' axis) (III.6) simplifies to

~igter*
%)[ § dsy, ds g ATm = tater™ (555, 8,5M 5 S1,S1,M ")
X,% 23, +1) di:fg[cos N e I G
x dfy,‘,fo[cos Broge qooe )]6 (812 - Siz)éMM' .

IV. RACAH COEFFICIENTS AS APPLIED TO
CROSSING MULTIPARTICLE AMPLITUDES

In the previous section it was shown how Racah co-
efficients could be used to handle disconnected diagrams
in the inelastic unitarity equations. In this section we
continue the analysis of multiparticle partial wave am-
plitudes by considering their properties under crossing.

To begin we review previous work® in which it is
shown how the crossing of any multiparticle amplitude
involves analytic continuation in only one variable; such
a result is valid only if a canonical set of variables is
used and this set of variables involves precisely the
variables entering the Racah coefficients. Here it should
be pointed out that crossing means crossing one particle
at a time in a multiparticle reaction. The more conven-
tional use of the term crossing, in which one incoming
and one outgoing particle are crossed, then resulis from
two sequential one-particle crossings; the goal of this
section is to show that the conventional crossing of two
particles involves the Racah coefficients in a crucial
way.

To make the following discussion as straightforward
as possible we consider only the simplest multiparticle
amplitude, in which two particles react to produce
three particles; that is, we consider the reaction 1’ +2’
—~1+4+2+3. The generalization to arbitrary multiparticle
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amplitudes is straightforward because of the structure
of the Racah coefficients for N-particle states.

The amplitude for 1’ +2' —1 +2 +3 is proportional to
(123(7|1'2":

A14.2u1¢z+3[81'2’ 00591'3(1'2' yPrrs.s17 512, 513] (123 ‘7‘ ‘ 1'2%)

— 20;'10'21[1261’)]%1'\; 2"'1+2*3(51er1'z:M512523) (IV.l)

Jieoe

M
where 8,,;,, and @,, 4.5, are polar and azimuthal angles
relating the line formed by the two incoming particles to
the plane formed by the three outgoing particles; the
angles are easily related to the relativistic invariants
tia= (P = py)? and £, = (p. - p,)?. The other two vari-
ables arise as the two subenergies of the symmetrically
coupled three-particle state. 4 *2' ~1+2+3 ig the partial
wave amplitude labeled by the total angular momentum
Jy+o and spin projection M.

To change to canonical variables for crossing the
amplitude (IV.1) it is necessary to choose which particle
is to be crossed. We eventually want to cross to the re-
action 2’ +3— 1’ +1 + 2 so we begin the one-particle
crossing by crossing particle 3 to the reaction 1’ +2/
+3—1+2. Then the amplitude for 1’ +2" -1+2+3
should contain variables in which 1 and 2 are first
coupled together, and then the two-particle state coupled
to 3, as was done in Eq. (II.8). A simple change of
variables, from s, to cosf,, ., [See Eq. (I1.14)], gives

194272 14243
A (S1spe, COSE 4 azyr P1r3-315 Syay COSOyg (12)]

I

7 -
JE [)M,IO'ZI [R (P1)]24 Lazes 1"z‘ks[su wrfyep ,MS 080, (12)]
1720
M

It

J R 7
J?Z' e [cosb,., az ,] exp(-iMo,, 3_31)d.,,,102[005 613 2 >]

712
1

X AL 2 (g s Treae s My S1ayd ). Iv.2)
Notice that d,;_‘oa[cos 6)342,] 1 part of the kernel carrying
a stepwise coupled state to a symmetric state as seen
in Eq. (I1.14). In Ref. 5 it is shown that the variables in
the amplitude of Eq. (IV.2) are well suited for crossing
to the 17 + 2’ + 3’ -+~ 1 + 2 reaction, for when the substitu-
tion rule is used in which p; — —p3, then cos6y 54,

= €0S8,,54z), €COSbi54,, = = COSbi3(,,, aNd @yi5.y gOES
into itself. Thus the substitution rule generates a trans-
formation in which the two polar angles stay in their
physical region, but change their physical meaning.
Further, if Vs, is chosen to be greater than M,, +M,,

+ M,, then under crossing (in which s,, changes from a
subenergy to the total energy) it also stays in its physi-
cal region and there is no analytic continuation of

AV #2=1+243 yp terms of s,,. Analytic continuation of
Al'#27=14233 ig pequired only with respect to s,.,. as this
variable is the total energy in the direct channel, but a
subenergy in the crossed channel. The sense in which
AV ¥ <1243 oan pe analytically continued to give the
crossed amplitude is discussed in Ref. 5; here we mere-
ly write
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1742443~ 142 - - =
AV L2, C0S 8,302y P13-310 5 Syre s COSBprqary )]
 Al7e27+ 14243
=hgont [Strg= €088z ys Prraars Sizr = €08 G342))
tv.3)

where A;;;f"“z“[] means the analytic continuation with
respect to s,,,, from the physical region where s;.,, is
the total energy to the physical region where it is a
subenergy. The crossing condition for the partial wave
amplitude is even simpler:

A3 1'2(312J12M81:2,J112:) =(=1) 12" ve

17427 = 13243 .
XA M e (sllzlJyleslzJ]_z),

cont

(Iv.4)

that is, one merely interchanges to role of J,, and J,.,.
{though, of course, still analytically continuing in s.,).
It is to be noticed that crossing one particle rather than
two as is conventionally done means it is possible to
cross partial wave amplitudes rather than just ampli-
tudes. This is of importance when combining crossing
with the inelastic unitarity equations, terms of which
were given in Sec. III, for the content of unitarity is
best expressed in terms of partial wave amplitudes.

It is clear that the canonical variables for crossing
one particle depend on which particle is to be crossed
and arise as the variables of the Racah coefficients.
This suggests that when crossing two particles the
Racah coefficients are needed just to move from the
coupling scheme involving one set of canonical variables
to the coupling scheme involving another canical set.
This is seen most readily by noting that the canonical
variables for the reaction 1’ +2/+3—~1+2, in which 3
has just been crossed, are (Sy,,J15, Mz, 5,000 d}000)s
while the canonical variables for 17 +2/ +3—~1+2, in
which 1’ is to be crossed to the reaction 2’ +3 -1’ +1
+2, are (S;5,J12, M|, Sa5,Jp0g) -

More concretely, we start with the partial wave am-
plitude 417*% 3" 1+2(g  J.. M3S1040 s Jpe0e) of Eq, (IV.4) and
use the Racah coefficients to get the amplitude

1‘&2'+§*l¢2 .
A (S12:J12:My, Spe3 s Iagit

)414.2‘.3- 1‘3(512,J12,M1, s Sg05 50y )=(12 | Ss ‘1'(2'5»

12912

Tia (0 N1 47
:%:f dbs,, (2’§)UMifM(p1') ! dmf:g [cos 6, @)

X 41 ezt 3e 1*2[312,J12,M, 8303, O3y (2'5)]' (tv.5)

Now make a change of variable in the subenergies, from
Sa03s COS 031, i3, ™ Spr3, Spege ™ €COS81i3 000 ,, Sy USing the
fact that

Sy=(p, +p,F=M2+M2+2(EE, - pp, cosb,) (IV.6)

and E,, E,, p;, and p; are functions only of s, and s,
when evaluated in the frame given in the parentheses
after the angle. Thus

17427 43~ 142 - -
A *2[$ 10y J12s M, Spi5, COSOL5 0.3

:741:+2'§§-1+2[512,J12,M’ Syige, COS 91,3(1,2, )] av.m
and the inverse Racah coefficient, Eq. (II.15), can be
used to write 4 **'*5*1*2 in those canonical variables
needed to cross particle 3:
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AL eande 1+2[312, Jy2s M, S1ep0, COSO % 1rg )]

g 7

=2 D (b3) s [cosbigqiar)]
Y
M3

xﬂ1'+2’+5~1+2(812,le,ME’ Siege ,JI'Z')‘ (IV.S)

Equations (IV.5)—(IV.8) can be combined to give
AV (g T M3, Sge s dyig)

_,/411’2'-03’1+2(812,J12,Mi’szlg’Jz,g) (IV.9)

where the arrow denotes the sequence of operations in-
volving the Racah coefficient, the change of variable,
and the inverse Racah coefficient.

To finally cross 1/ +2/ -1 +2+3t0 2/ +3—~17 +1 +2
we cross AV ¥ 3 12(s o J,. My, S, Jp3) @ was done in
Eq. (IV.4) to get

}42'+§~ 1"*1*2(82'5, J2’§, My , sxz’le)
= (= 1)1 B g B2, T My, S05, yrg)
(Iv.10)
Putting all these steps together then gives
AV or s T1ege s M3, 8155 J15)
_'/41'*2'*5-“2(512’J12’M§’ 100051020
(analytic continuation in s,,, )
~Avont. #8142 (8125 J12>Mys 5 S05, Jr3)
(use of Racah coefficients)

— 2'#§-1_'+1+2
cont (S3035Jpems Myt 5 S15,5d15)

(analytic continuation in s,,)
(1v.11)

and shows, assuming that analytic continuation is possi-
ble, that the Racah coefficients provide the transforma-
tions between the correct canonical variables. Note that
the angular momentum label is not preserved under the
double crossing Eq. (IV.11) as it is in the single cross-
ing Eq. (IV.10), which is of course why one convention-
ally crosses amplitudes rather than partial wave
amplitudes.

V. CONCLUSION

It has been shown how one may define Racah coeffi-
cients for the Poincaré group by relating all basis trans-
formations to a standard preferred basis, the sym-
metrically coupled basis. With only a slight amount of
complication it is possible to calculate the coefficients
for particles with arbitrary spin and boost.?

Further, one can consider going from three to four
and, in general, to N particles, corresponding to the
3J, 6J, and 9J, «++ symbols.! Since it is possible to
construct symmetrically coupled N-particle states, the
entire procedure outlined in Sec. II quite easily gener-
alizes to N particles. For example for N =4 one could
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couple 1 to 2, then 1 -2 to 3, and finally 1 -2 ~ 3 to 4;
the Racah coefficient relating such a stepwise coupled
state to the symmetrically coupled 4-particle state in-
volves two Wigner /) functions, one with an argument
evaluated in the 1 ~2 CM frame, and the other in the
1-2-3CM frame. Again the argument of these /) func-
tions can be shown to involve relativistically invariant
subenergies only. And, in general, for N particles, N
—-1/) functions are involved, each/) function labeling
the intermediate angular momentum of the previously
coupled particles. The only complication which arises in
this procedure is that the set of subenergies formed
from momenta such as (p, +p,)%, (p,+p, +p,)?, etc. no
longer fixes the momenta of all the particles in the body-
fixed frame; it is also necessary to introduce invariants
such as e,qp*pipip}. But even this complication is
handled by the group theory. It can be shown that the
manifold corresponding to an N-particle phase space is
given as the double coset manifold

SUQR)RSUQ2)® -+ SU(2)/

N times
SL{2,C)®SL(2,C)®--+®SL(2,C)/SL(2,C).
e e —

N times

Written in this form one sees that any choice of relativis-
tic invariants formed from four momenta provides a set
of coordinates for the double coset space. This topic

will be discussed in more detail in a subsequent paper
dealing with particles having intrinsic spin and the re-
lation between Racah coefficients and spin crossing
matrices.

The general conclusion to be drawn is that dealing
with symmetrically coupled N-particle states is no more
complicated than dealing with three-particle states; this
result arises solely from the induced representation
structure of the Poincaré group and is to be contrasted
with the rotation group and the complexities arising
from 9J, 12J, etc., symbols.
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It is shown that the general chiral SU, X S U, invariant pion Lagrangian in the form given by
Giirsey can be used to obtain a general and convenient parametrization of an infinite set of
generators of the noncompact O (4,1) group. Various special cases of the general form of the
generators are given, and one particular form is shown to coincide with the generators of the O(4,1)

group used in the literature.

. INTRODUCTION

We consider here the problem of representing the
generators of the noncompact 0(4, 1) group using a pair
of canonically conjugate operators. For the purpose of
parametrizing the generators in a convenient way, we
use the general form of the chiral SU,X SU, invariant
pion Lagrangian given by Giirsey.! The pair of canoni-
cally conjugate operators then becomes the isovector
pion field ¢ and its canonically conjugate momentum
II defined through the chiral invariant pion Lagrangian.
Since the most general chiral SU,XSU, invariant pion
Lagrangian contains an arbitrary function of the pion
field, we thus define an infinite set of operators Il that
are canonically conjugate to ¢. Using this infinite set
of canonically conjugate operators, we construct an in-
finite set of generators of O(4, 1) group. For the
0(4) ~SU,X8U, subgroup of the O(4, 1) group, we take
the usual vector and axial vector operators of the chiral
SU,XSU, group. To these six operators, we adjoin a set
of four operators that form a chiral 4-vector and thus
transform as the (3, $) representation of the chiral
SU,XSU, group. The resulting set of ten operators is
shown to generate the noncompact O(4, 1) group. Several
special cases of the general form of the generators are
considered, and one particular form is found to coin-
cide with the generators of 0(4, 1) group used by
Glirsey.?

. CHIRAL SU, X SU, PION LAGRANGIAN

In this section we define the chiral SU,XSU, invariant
pion Lagrangian as given by Glirsey! and cast it in a
form that will fascilitate the discussion of this paper.

In the method initiated by Glirsey, the SU,XSU, in-
variant pion Lagrangian is expressed in terms of a
2X2 unitary, unimodular pion matrix U, which is a
nonlinear function of the dimensionless operator if ?-—(/3,
where f is a real coupling parameter with the dimension
of length, and 7 are the usual 2x2 Pauli matrices. A
general and convenient parametrization of the pion
matrix is given by

UGIT = @)= 0o(f29%) + 2if T~ @ p(f?¢?), (1)

where o0 and p are real, scalar, isoscalar functions of
the dimensionless operator f2¢?%. Without any loss of
generality, we choose ¢ and p such that

0(0)=p(0)=1. (2)

1253 Journal of Mathematical Physics, Vol. 16, No. 6, June 1975

The requirement that U be unitary implies that

o +4f%p%¢" =1, (3)
and hence, from Egs. (2) and (3), we get

o' ==2+0(f%), (4)
where the prime denotes a derivative with respect to
f2¢?. Thus, in general, ¢ and p are given by
(5a)
(5b)

o(f2¢?) =1-21% + O(f"),
p(f2@*)=1+0(f?).

The matrix U is assumed to transform linearly under
the chiral SU,XSU, group as the (3, 3) representation,
so that its transformation law is

U—explit+(w-v)/2]Uexp|-iT+ (w+v)/2], (6)

where w and v are the space—time independent isospin
and chiral parameters, respectively.

In terms of the pion matrix U, the chiral SU,XSU, in-
variant pion Lagrangian can be written as

[n==-(1/16F%)Tr[3,U8,U"] (7

where the normalization has been chosen such that the
expansion of / ; in powers of f gives the free pion
kinetic energy term in the lowest order. By using the
explicit form of U given in Eq. (1), the pion Lagrangian
(7) can also be written as

L n==300,0@) 3,(09) + (1/47%)3,00,0]. (8)

We note that the unitarity condition (3) gives a relation
between 0 and p, and hence only one of these pion func-
tions is independent. Until a specific choice is made for
this independent pion function, the SU,XSU, invariant
pion Lagrangian given above is quite general.

We now proceed to cast the chiral invariant pion
Lagrangian (7) or (8) in a form that utilizes a metric in
three-dimensional curved isospin space. To this end,
we write the Lagrangian given in Eq. (7) as

L n=-(1/16/*)Tr[2,U3,U"]=-3G"3,¢%, ¢’ (9)

where i,j=1,2,3, and

1 U aU*)
Gl — —— — =,
8f* Tr(a(p' ¢! (10a)
Copyright © 1975 American Institute of Physics 1253



By using the explicit form for U, computing the trace,

and using several identities that follow from the unitarity

relation (3), the expression for the metric G¥ can be
simplified to
s N . 0/2 _ 4p4 )
G = 2 ij 4 2 51,41

P [6 frete (52""——(1_02) . (10b)
We note that the metric form of the SU,XSU, pion
Lagrangian given here provides a generalization of the
pion Lagrangian written previously in this form by
Meetz® who considered the special case when p=1.

Using the pion Lagrangian (9), we define the four-
momentum Hu‘ canonically conjugate to ¢ as

5/ j

=GY9, ¢! 11
(a (Pi) w?s ( )
and, inverting this equation, we can express the or-

dinary derivative of the pion field in terms of its
canonically conjugate momentum as

m,i=-

d,pt=(GHY 1,7, (12)

1 is given by
” 4
(G_1);'j:pl_2 [511 fz(P qol(if)_“z__oéz%_))] (13)

In concluding this section, we observe that the method
used here to obtain the explicit form of the metric for a
chiral invariant meson Lagrangian can be extended to
the case of chiral SU,XSU, symmetry.

where the inverse metric (G~

{1l. GENERATORS OF 0(4,1) GROUP

In this section we construct the generators of O(4, 1)
group in their general form in terms of the pion field
operator ¢!, its canonically conjugate momentum II°
=11,%, and isoscalar functions of ¢! and 11i. Our basic
assumption is that the operators ¢' and II' satisfy the
equal-time canonical commutation relation

[¢i(x), T ()]5(xy-y,) =i896(X-y). (14)
The generators of the 0(4) ~SU,XSU, subgroup of the
O(4, 1) group are taken to be the time components of the
usual vector and the axial vector currents of the chiral
SU,X8U, group defined according to
3, =(1/8if) T (U2, U+ Ud, UM 7/2]=
o = (1/8if2) T (U3, U -~ U3, UM)T/2]
=(1/21)[02,(p@) - (p®)3,,0). (16)

PPexd, @,  (15)

To these six operators, we adjoin a set of four current
operators that transform as a 4-vector under the chiral
SU,*SU, group, and are defined as

su =(1/2f)8,(p9), am
S, =(1/4f%)3 0. (18)

Then using the relation between 8,¢° and I1,’ given by
Eq. (12), the time components of the operators J,, Jg,,

F,,, and S, can be expressed in terms of ¢* and I
according to

Jo=¢X 11, (19)
1254 J. Math. Phys., Vol. 16, No. 6, June 1975

R = [ Fg ! (x)d®,

Jso:z_}[( )n +4f2( )tpqa n] (20)

Fy 21f[( >H+ o (op" = p¢' )pg I'[], (21)
202
So= - ¢-1 (22)

If we now define the charges corresponding to these
ten operators as

= f Joix)dxe®,  Qi= [ Jyo'(¥) dx, (23)

S= [ §,(x) dx, (24)
then, using the canonical commuation relation (14), we
find that the ten operators @, @.%, R,!, and S obey the
commutation relations

(Qf, @] =1Qi, @,7]=ic'*Q*, (25)
(QF, @7 =ie* Q% (26)
@, R/]=4cii*R.%, [Q%,8)=0, 27
(@, R)=15%s, [@Q,,S]=-iR,}, (28)
(R S]==-iQ., [R,,RI]=—ic"*Q.P (29)

which are recognized as the commutation relations of
the noncompact 0(4, 1) group.

We note that the commutation relations (25)—(29) hold
in general for arbitrary choices of o and p consistent
with the unitarity constraint (3). Any particular choice
of ¢ and p will give a special parametrization of the gen-
erators of O(4, 1) group. We consider some special
cases in the next section.

V. SPECIAL MODELS

In this section we give several special forms of the
generators of the O(4, 1) group. These special forms
result from specific choices for the pion functions ¢ and
p. The cases we consider correspond to various
models of the chiral SU,XSU, invariant pion—pion in-
teraction that have been studied by various authors.

A. Square-root model*

In this model,

o=(1-4f2*)/2, p=1, (30)
and hence
Jo=¢XH, J50=(1/27)(1-4f2¢*)/* M, (31)
so=(1/2f) (1= 4f%¢ ¢ - IN),

=—(1-4f2p*) % p-1L. (32)

B. Inverse square-root model®

For this case,

o=p=(1+4r%*"/? (33)
and
1
Jo=¢XI, Jp=137 (I+4f*@ -1, (34)
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Fyo=(1/27) (1+ 420?11,
S,=—(1+4f%p? -1

C. Exponential model®
This model is defined by
0= cos(4f2¢*)'/?,
p=(42¢*)1/* sin(4f %) 2,
and hence the generators are given by
do=9¢XII,
Jso=(1/21) {(4£2¢)*/* cot(4r¢)* 11
- 4774 %0%) /2 cot(4f %%y /2
- (4r%¢%) ] @ ¢ - 1},
Fyo=(1/21){(4/%¢%) ® csc(4/2¢% /211
- 47%((4 29"y /2 esc(4f®e?) /®
- (420%™ cos(4f%9*) 1 ¢ - 11},

So=— (4202 sin(4f%¢*)'/? @ -1

D. Linear model®
For this model,
0=1-2f2¢% p=(1-f2¢*)'/?
and, hence,

Jo=¢xn,

3= 5 (= F20 2 (1 25 It f2(1 = pog)

AN

Fyo= i}' (1= F202y /2 M+ £2(1 - f20%) /2 (2f 207 - 3)p ¢ - 1]

Se==(1-f?¢* @11

E. Rational model’

Here

o=(1-f2*) 1 +120%", p=(1+f%%)?,
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(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
(45)

(46)

and hence the generators are

Jo=@XII, (47)
Jo=(1/20) [ -2 1+ 2720 ¢~ 1], (48)
Fyo=(1/21)(1+ f20*)1 - 2f%¢ ¢ - 11], (49)
Se=-¢@-II. (50)

We note that this particular form of the generators of
the O(4, 1) group has been used previously by Giirsey?®
and by Barut.® This form has also been found useful for
the description of chiral SU,XSU, representation mixing
for the pseudoscalar mesons. ®

In conclusion, we remark that the method used here
for constructing the general form of the generators of
the O(4, 1) group can be extended to the case of the
conformal group O(4, 2).
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In this short note we calculate the correlation and cluster functions of the discrete Coulomb gas in one
dimension considered recently by Gaudin. We consider also the discrete versions of the Gaussian ensembiles

previously studied extensively.

Recently Gaudin® considered a discrete version of the
circular ensembles of Dyson.? The positions which a
unit charge can occupy on the circumference of the unit
circle are restricted to N equidistant points exp(i6,)
6,=27j/N, 1<j<N. One considers only three values
of the inverse temperature 8, 8=1,2, and 4. The joint
probability density for » unit charges to occupy posi-
tions j,,...,j, is taken as

1
P (71)"';]71)—an3 Nnexp(" BW) (1)
where
W=W(i1yeeosdn)
- _/: lnlewt—e”m , @)
l&€1<msn
9,:27le/N, (3)

and C, , is the normalisation constant

Cpymni NI /21 Anl cotln—2j+1)5% , @)
Cyna=1n! ®)
= G, ©

where [x] denotes the integral part of x and

V:%N—lé (n

The values of C,,; given above are due to Gaudin, He
proceeds then to calculate other thermodynamic quan-
tities begining with the free energy.

We want to say that one can calculate the correlation
and cluster functions for this discrete system. The
simplest case is 8=2 because the orthogonality
property

1 /%

el™de=>5

5/, =6,,, M an integer, (8)

persists when we replace the integration by a sum over
N discrete points
eim@r /i — 75

1 &
4y Gm,lNy

— m and ! integers. (9)
N,i =1 lz=ow
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If p and g take the values I -n-3, [=1,2,...,2#n, then

1%/8(@ a>(z-/N>1_5 (10)
j=l
provided 2 < N. Hence for =4, 2n< N, one can calcu-
late all correlation and cluster functions by Dyson’s
method® of quaternion determinants. If 2» > N the right-
hand side of Eq. (10) may contain additional terms
6,4+ Also if p takes the values [ - stn+1), 1

=1,2,...,n and g the values d:(l-{-z(n_l))
= 1,2, ...,®, then the sum in Eq, (10) is not longer
zero, Thus the method of quaternion determinants fails
for B =4, 2n> N or for the case f=1, However, in this
later case one may still calculate the two point correla-
tion function by the method of summation over alter-
nate variables.*

The results are as follows. With

_ _1_ D ettt — 1 M
S"(G)'—N% = T N sin(36) ’ (1
D, (6)= %Z igetd | (12)
1,,(8)= 1% 2 Gig) et (13)

where p and ¢ take, respectively, the values

pz_ngl,_n;3,°“,n2—19 (14)
=:1/2, £3/2,...,+ (= (1/2)), (15)
we define
0,(8) =S5, (), (16)
and
S,,(8) D,,(6)
oi(6)=3 [12"(9) s::(@)] ‘ an

The m point correlation function defined by

n! ” .
737 7‘ P (719 ,]n) (18)

mB(]l,“-9.7m) (n Wl) J,,,qi j:

is given for 8=2 and =4 by
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Rog(iry e i) ={detlog(6y = 00k, 0y, ..., Py (19)

where
A=1 for =2 and ?\:1/2 for f=4.

Moreover, if 3=4, Eq. (19) is valid only for N> 2%,
The determinant in the above equation is of order
mXm if =2 and of order 2mX2m if B=4. The m
point cluster function defined* by

Jm)= L( 1ym=i(g - 1)! FIR ,#(6s, With & in G),
(20)

Togldrseoss

where G denotes any division.of the indices j;,jpy.. .47,
into unordered subsets G,,...,G, and %, is the number of
indices in G,, is given for 8=2 and 8=4 by

v yi)=A Tr Z{aﬁ(ej1 -
P

- 911)}

with A=1 for 8=2 and x=1/2 for B=4 and where },,
denotes a sum over the (m —1)! distinet cyclic permu-
tations of the indices 1,2,...,m. In case 8=4, we
again suppose N = 2xn,

Except that (27)77, is replaced by N'3, in the de-
finitions of S,, D,, and I, above, the correlation and
cluster functions are exactly the same as in the con-
tinuous case of Dyson’s circular ensembles; therefore,
they coincide when N—«, as they should.

Also one may consider discrete versions of the
Gaussian ensembles and in general ensembles related
to other classical orthogonal polynomials.® For this the
positions which a unit charge can occupy is restricted
tothe set of zeros x,, 1<j< N, of H,(x), where H,(x)
is the Nth Hermite polynomial for Gaussian ensembles
or it is the Nth degree polynomial of the orthogonal set
in general. The joint probability density for the » unit
charges to be at positions x,,...,x, is taken as

6, )0,(6,,— 6

A

T s Gry oo

(21)

Py, ..., x,) = Gk exp(— BW), (22)
where
1 I
W=W(x,,...,x, —2w¢ 2 Inl|x -z,
B f= 1<{<j%n

(23)

w, are the weights of the Gaussian quadrature formula®
N-1 -
= [’Z {H](x{)}z]
=0

related to the set of orthogonal polynomials used and
the normalization constant G,; does not depend on N;
for the Gaussian case,

G e = n/2 2-n(n-1)/4 Bﬂ(n-I)(l-B)/4{I- 1+ B)}-n I—[ rl(l +2ﬁ])

(24)

(25)

The presence of 8in Eq. (23) above is very uncom-
fortable, but we do not know how to get rid of it.

We give below the results only for the Gaussian case.
Because of the formula

é w, fx,) = f_: exp(-x%) Alx) dx, (26)
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where f(x) is a polynomial of degree <2N, the working
is almost the same as in Ref, 7 with minor changes and
we will not repeat it here.

Denoting the normalized harmonic oscillator wave-
functions by

0, = (22511 P exple?/2) (- 17) " exp(- ),

27
we set
[=3 ] e cyeree ¥y {00 0,(3) = 0,00 ()], (28)
)= 3 fy 00,9, (29)
S (x,5)
=2 ¢ (9) +Gn) 2,1 (x) [Zel(y,t) 0, @) dt,
i=0
(30)
Lix,y)= [ e(x,2)S,(t,y)dt, (31)
Dn(x, ) ) 12
5 (5) " o0t oo, )
J"(x,y)zln(x, ) ~e(x, y)’ (33)
a(x):{o if » is even, (34)
a0/ [ @, @) dt if nis odd,
_[8,{x,9) +alx) D,(x,y)
o1l y) = [w, ») S(3,%) ratn) (35)
0., y)=:z'1 10 0,(), (36)
and
- l Sz,.u(xyy) Dznu(x,y)
04(x,y)_ 2 [Iznu(x: ») Szm-x(y; x)] ’ (37)
Then one has
__n! I L Pylxsyeeesx;)
={det[oy(x,, x,)] l; Jhzigs.. }x (38)

where A =1/2 for f=1 and =4 and » =1 for 8=2. As
for the continuous case, the determinant in Eq. (38) is
of order m Xm for =2 and of order 2m X2m for B=1
and =4.

It might seem strange® that the result (19) was not
stated for the case =1 and it was stated for 8=4 only
when 2z < N, while the corresponding result (38) for
the Gaussian model is valid without these restrictions.
The reason why Dyson’s method works in the later case

under all circumstances is that the functions ¢, S,, I,

D,, and J, defined by Eqs. (29)—(33) satisfy the

relations

exS =1, exD =D *e¢=S, J xS =Jx*xD, =0, (39)
Sn*snan*In:In*Dnzsm (40)
Sn *Inzln’ Dn *Sn:Dn!
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with the notation

FxG= i F(X,Zj)G(Zj:y)7 (41)

j=1

z; being the zeros of the Hermite polynomial H N(x).
The method would work for the circular model as well
if one could define functions satisfying the above rela-
tions (39)—(40), with the notation

- 2n 27
F*G=£ F(e, N]) G(-ﬁ],é). (42)
However, because of the reasons stated just after Eq.
(10), relations (40) are not valid for the case =4,

2n > N, and we could not define an ¢ with the required
properties,
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We obtain expressions for the radiative level shifts of a two-level system in terms of (i) recurrence
relations, (ii) ratios of determinants, (iii) continued fractions, and (iv) a Lidstone expansion. These
expressions are shown to be very useful for numerical computations. It is pointed out that
perturbation series in powers of the coupling constant are not the most appropriate way of
representing the solutions of the problem, but if they are to be used, different series should be
employed depending on the relative value of the frequency of the field to the frequency of the
two-level system. The significance of these results in the general theory of perturbation is discussed.

1. INTRODUCTION

This paper contains a discussion of a simple model
of the interaction of radiation characterized by a fre-
quency w with a two level atom whose energy levels are
postulated to be + 3w, (in units with #=1). The Hamilto-
nian frequently chosen to represent the photon—atom
interaction is

H=w,5+wa'a+A[(@'S"+aS*) + (@’S* +aS7)], (1.1)

where a' and a are the usual photon creation and annihi-
lation operators and $%, S7, and S* are the commonly
used spin operators, In particular S for a spin 3 sys-
tem, which is equivalent to our two level atom, has

the characteristic values + 3. The parameter X is a
measure of the strength of the photon--atom interaction.
This model interaction of only one field mode with a two
level atom is a simple model and does not represent
adequately many features of the more realistic interac-
tion involving an infinite number of modes. The many
mode case is being examined and will be published in a
later paper.

We will employ the Bargmann representation dis-
played in Eq. (2. 2) of the next section to express H as
a differential operator. In this representation the un-
perturbed wavefunctions have an especially simple
form being merely a product of powers of three complex
variables. By expanding the wavefunctions of the full
Hamiltonian as a linear combination of the unperturbed
wave functions, the coefficients of the various products
of powers will be shown to satisty certain recurrence
formulas which can be investigated in detail through the
introduction of appropriate generating functions. From
these generating functions, it is found that the required
energy levels of (1.1) are eigenvalues of a secular
equation which is essentially composed as the sum of
two continued fractions. In the rotating wave approxi-
mation in which the second interaction term in the
square bracket of (1.1) is neglected, our generating
functions immediately yield the well-known energy
levels for the coupled system as first obtained by
Jaynes and Cummings.

The continued fraction formulation of the secular
equation for the energy levels of (1. 1) is similar to one
derived by Swain by a quite different type of analysis.
The advantage of the continued fraction formulation is
that a number of different kinds of expansions can be
made, depending on the regime of interest of the basic
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parameters (A, w,w;). When A is small, power series in
X equivalent to those which would follow from standard
perturbation theory are obtained. In the large quantum
number limit they are the same as expansions derived
by Shirley by semiclassical methods,

The various formulas which are equivalent to results
of standard perturbation theory have resonance denomi-
nators proportional to (w; — w), {wy=3w), (wWy—5w)---.
Hence it would seem that the expansions diverge as
field and atom modes become resonant, However, if
one sets w=w, in the basic continued fractions before
calculations are made, new series expansion in X with-
out resonance terms are obtained. There are also al-
ternative expansions when w;,=3w, etc. The resonance
difficulty can be traced to invalid and resolved by
making valid series expansions. In its most primitive
form the problem is clear if one remembers the two
expansions for (@+b),

allt—(b/a)+---] ifa>b
b1 - (a/b)+---] if b>a.

(1.2a)

(@+d)= (1. 2b)

In our basic continued fraction a term analogous to b is
proportional to x while one analogous to a is proportion-
al to (w - w;). The standard perturbation series would
correspond to (1. 2a) while the appropriate expansion

at or near resonance is (1. 2b). The proper expansion
of the continued fraction in this regime yields energy
levels which are power series in (w - w;). Analogous
series are also obtained near the resonance 3w =w,,

etc,

We will also discuss a novel perturbation theory
which takes advantage of the fact that energy levels are
known exactly when the rotating wave approximation is
made [i. e., when (a'S*+aS") is omitted] as well as when
the term (a'S™+aS") is omitted. Hence, if we write the
interaction term in (1.1) as

2A{y(@'S +aS") + (1 - y){@'S" +aS7)], 1.3)

we know the properties of the system exactly when
v=1 and when y =0. We require the properties when
y=13. As a first approximation a simple interpolation
between the two exact results would be chosen, Hence
if we were concerned with a function A(2), y) which
depended on the full Hamiltonian H(2x, y), then

AN, )= (1= )A2X, 0) +yA(2X, 1), (1.4)
the A(2)x, 0) and A(2x, 1) being known exactly from the
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rotating and “counter rotating” wave approximation.
Equation (1. 4) is then systematically improved by
making an expansion (the Lidstone expansion) of 4(2x, )
about the two points y=0 and y =1.

This paper is the first in what we hope will develop
into a series on models of increasing complexity which
involve Hamiltonians which can be expressed in terms
of creation, annihilation, and spin operators. The style
will be to use the Bargmann representation and to then
find appropriate generating functions which will allow
one to find a clear formulation of the secular equation
which must be solved. A richer variety of series ex-
pansions, some of which do not involve divergences
will then be possible, than is available from standard
perturbation theory. Investigation of singularities which
are inherent in problems might be made directly from
the differential equations obtained by using the Barg-
mann representation.

2. THE HAMILTONIAN AND THE BASIC
RECURRENCE RELATIONS

The problem of calculating the stimulated and spon-
taneous radiative frequency shifts in a two-level atom,
and the mathematically equivalent problem of determin-
ing the so-called Bloch—Siegert shifts in a spin % sys-
tem in a magnetic field, are of considerable theoretical
and experimental interest and have been the subject of
many studies in recent years.! The problem involves,
in principle, the determination of the eigenvalues of the
following Hamiltonian (in units of Z=1);

H=w,S*+wata+ ('S +aS") + (a'S* +aS")]
EHD + )\Hi

2.1)

where a' and a are the photon creation and annihilation
operators and the S’s are the usual spin operators. We
begin by casting the eigenvalue equations H|E) =E|E)
into the form of a differential equation using the
Bargmann representation’ for the field and spin
operators

. B R UL z~l<9__,i>
@z a 0z’ 5 ”av’ S ”au’ S 2 \"“ Bu v
(2.2)

In terms of this representation, the eigenvalue equation
becomes

W (u—a— v— g +wz—a—
R Y7 9z
A 73— i i +| zu— Gl +i i)]
+ 21 au+ p uav 3 azl Y

Xf(hu,v,2) = ENf();u, v, 2). (2.3)

The unperturbed eigenfunction f %™ "(x;«, v, z) which
corresponds to the quantum numbers S, = (for the total
and z-component of the spin), and » (for the number of
photons) is given by

fEm0u,v,2) Ut (2.4)
The associated unperturbed eigenvalue is given by
ES™(0) = (= S+ m)w +nw. 2. 5)

For the spin 3 system, we write the unperturbed eigen-
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functions and eigenvalues as 2 1% /2),1-0)/2,n 514

30w, +nw, where o0 =—1 (lower level) and 1 {upper level)
and n=0,1,2,---, In the presence of interaction, let
the energy and eigenfunction of Eq. (2. 3) corresponding
to the quantum numbersmo and »# be expressed by

Eo"()) = 30w, + nw + 2 AJTN (2. 8)
=1
and
o u, v, 2)
(1+0)/2 (l-a)/2Zn+u(1+a)/2v(1-c)/2 nZ} Bo, Zl v Z))\p
p=1 ’ )
2.7
We now make a crucial step by letting®
D
BY"(u,v,z) = 2 i} b7 artvtizh (2. 8)
k==p iz==p
with 535 o =6, . Then substitution of Egs. (2.6) and

(2.7) into the eigenvalue equation (2. 3) and comparison
of the coefficients of like powers of #, v, and 2 lead us,
as shown in Appendix A, to the following recurrence
relation involving A’s and b’s. This enables us to deter-
mine these quantities recurrsively in a consisfen! man-
ner (omitting the superscripts ¢ and »n on the A’s and

b’s for convenience):

iwy +kwib,, ;. w3 +0) 434110, 0
#[= 50 +0) =i+ 2]0e+ b+ )by g, iy, put)
+{{~ 30 +0) =i+ 2]b,5001, et
o3

+{zQ+0)+i+ 1]+ R+ 1)b, sist,ael)
p-1

=21 A

q=0

p-q a,t,k (2- 9)
with b, =98, ¢ and b,;; ,=01if 17} or |k| or both is >p
[see Eq. (2.8)]. The step given by Eq. (2. 8) is crucial
because if the lower or upper limits of the summations
were chosen differently, the resulting recurrence rela-
tion would lead to either an inconsisteney or redundan-
cy. * We note that the eigenfunction in (2. 7) should be
expressible in the form

Y

E u+d,v)z
: Cplt +dyv)

(2.10)

=

where ¢, and d, are some constants, but this appears to
be inconsistent with the form obtained by substituting
(2. 8) into (2.7). Actually, however, the recurrence
relation (2. 9) automatically gives, as we show in
Appendix B, by'] ,=0 for all k¥ <n and b))} ,=0 unless
i=0or —1 and by;} ,=0 unless i=0 or 1, and thus we
have the correct form (2. 10) for the eigenfunctions.

We also show in Appendix B that the only nonzero

b,.1,, for 7 =0 are those for which % is even and the only
nonzero b,;; , for £=1 or —1 are those for which & is
odd. All these results hold no matter whether iw, +kw
#0 or =0 for certain / and k., In the case iwy+kw#0,
the nonzero b’s are

p even, k even

bp;o.k’
and

b p odd, k odd.

praly ks

The recursion scheme for the case n =0 (spontaneous
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k—-»

pi 1 2 3 4 5 6 7 8
1

2 X

3 X b4

4 X X

5 X X X

6 X X X

1 X X X X

8 X X X X
FIG. 1.

emission} in the nonresonance case, for example, is
given in Fig. 1, where p denotes, as usual, the order
of the perturbation and the crosses represent the non-
zero b’s which need to be calculated in order to obtain
the coefficient A in Eq. (2. 6) of that order. As can be
seen from Eq. (2.9), the b,;; , are expressed in terms
of the A’s and b’s of the previous orders, and they can
be determined individually as there is only one b of
order p appearing in each equation (2, 9), Thus, al-
though the number of b’s which need to be determined
increases as the order of the perturbation term required
increases, the labor involved increases only linearly,
and the recursion scheme is seen to clearly provide a
very powerful and very efficient method for numerical
computation.

For a finite value of n, e,g., n=4, the recursion
scheme is shown in Fig. 2. For very large value of #n,
the values of b become symmetrical about 2 =0 and the
scheme is effectively reduced to that shown in Fig. 1.

It will be noted from (2. 9) that if w =wy, or 3w=w,,
etc., the recurrence relation (2. 9) can still be used, by
rearranging terms on the left- and right-hand sides,
to give b,;; ,. These resonance cases are conveniently
dealt with by expressing A and b in a different way, as
we shall discuss in the following sections.

3. ENERGY EXPRESSIONS IN TERMS OF
DETERMINANTS AND IN TERMS OF
CONTINUED FRACTIONS

We now show that the recurrence relation (2. 9) given
in the preceding section can be expressed in terms of
certain determinants which in turn satisfy certain re-
currence relations.

Let us consider only the case 0 =— 1 because the re-
sult for the case 0 =1 can be immediately deduced by a
simple symmetry consideration (changing w, into — w,,
etc. ). We also omit the superscripts ¢ and # on the
A’s and b’s for convenience, By using the following
more compact notations,

Wy (2k) =Dy, 2
and
Vp(Zk" I)Ebp;i.Zk-l’ (3-1)

the recurrence relation (2. 9), for 0 =—1, can be written
as two simultaneous equations:

2kwi, (2k) + (n + 2k +1)y, 42k +1)+ Vy1(2k — 1)
p=1

= QZ:OA,,.QI‘LP(zk), (3- 2)
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[k - D)w + wy ]y, 1 (2k = 1) + (n+ 2k, (2R) + 1, p (2% ~ 2)
p=1
=27 A, 40,2k =1)
a=0
with the conditions u,(0) =5, , and pu,(2k)=v,.,(22~1)=0
if [2k| > p, We define the generating functions

U0 = f{; TRPIIN (3.3)

Vorut (M) = ?1 v, (2k = 1)00*, 3.4)
and

A= pZ?:A’)‘P' (3.5)

From (3. 2), we get
[2kw = AU (N) + Ve (W) + (2 + 2k + 1) Vi (W) = A(X) By, 24,
(8.6)

[(2% = 1)w + wg = AN Vot (W) + X[ Upyg (A) + (1 + 28) Uy, (V)]

= = X2[8y, auap + (1 + 2k) B, 23],
Finally by abbreviating

Ay, = 2kw —~ A(N),

By = [(2k - Do +wy = AN, 3.7
Cy=n+k,

Eq. (3.6) may be expressed in the tridiagonal matrix
form by

-1 Ay —C_q
-1 a, -¢
-1 a4 -c
-1 a =0
-1 as -C3

L 3

U 0

- V_4() "
x| v =] AW 3.8)
AP 1

Us(A) 0

I

Let us define the tridiagonal determinants
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1 X X
2 X X
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4 X X X X
5 X X X X X
6 X X X X X
7 X X X X X X
8 x X X X X X
FIG. 2.

a_, = Copmsl

-1 Auppil — Coms2
Xpp= ’ ) , k=0,1,...,m~1,

-1 a
“tek (3.9)

Ay —Cp

-1 A, — Cpret
Ym-r)zE ’ ) ) 1] k:2,3,...,77’7+1. (3'10)

-1 a,

The elements g\ ., g4l met, and gk .0 of the inverse

of the tridiagonal matrix

Qum = Cumst

-1 Tppst = Coume?

G = 8.11)

are given by*

Enitom= Y2 Xt/ D, (3.12)

g5k i =XV me/ D, (3.13)
and

&l e =01 XY g/ D, (3.14)

where D=detG. From Eqg. (3.8), we obtain
Uy(\) = (1/D)[RY g X oy + ANX Y g + 1+ 1) X, Y ).
(3.15)
Since Uy(x) =0, we find
AQ)==Lim [(nX, /X)) + 00+ 1)(V o3/ Y a2) |-

Expression (3. 16) represents a solution for the pertur-
bation part of the energy E(A). However, it is not an
explicit one because the determinants X’s and ¥’s con-
tain A(\) [see Eq. (3.7)]; but by letting A(X) =A;x

+ A% 4+ -« the coefficients A, A,,**+ can be readily ob-

(3.186)
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tained by iteration. The determinants {X,} and {Y,} have
the convenient properties that they satisfy the following
recurrence relations:

X = e me1)Xpet = Cpmtmet X2y £ =2,3,000,m,  (3.17)

and
Y= (1) Vit = Cam ¥ a2, k=m+2,m+3,...,2m,
(3.18)

where X, and Y;,,, are defined to be equal to 1, As far
as numerical computation is concerned, no particular
advantage is gained in using (3, 16) rather than the
recurrence relation (2. 9). However, (3.16) is a com-~
pact expression which, incidentally, is suggestive of
the Padé approximent technique. It is also useful in
giving an over-all view of the nature of the perturbation
solution, as will become evident as we proceed to a
continued fraction representation,

In the interim, we note that if the Hamiltonian (2. 1)
consists of only the rotating terms, i.e., if

H=w,S +wa'a+r(a'$™+aS", (3.19)

the recurrence relation corresponding to (3. 2) turns out
to consist of only two equations

0+0+v,4(=1)=4,,
b1 (3.20)
(—w+w)v,q(=1)+np,(0)+0= Z:/()Ap_qvq(— 1),
the other vp_i(Zk- 1) and p,{(2%) for %+ 0 being equal to
zero. Thus by defining as before

V'i(”:é”ﬂ(‘l)"m (3.21)
and

AN = é/&px”, (3.22)
we get from (3. 20)

V. () =AM,

(3.23)

— (W= w)V )+ =AW V_ (),
or

AN+ (w - w)A(N) —maZ =0, (3.24)
i.e.,

A == 5w - wy) £ 3] (@ = wy)* + 4na®t /2 (3.25)

Since A(x)=0 for A =0, only the root with the plus sign
before the square root should be taken and

EW=(n-3)w+3{w- w0)2+4n)\2]“2 (3.26)
which is a well-known result, °
There are two series expansions for E(\). If
X/ (w - wy)* <1, (3. 26a)
then
EO) = (- Do+ 5w = wp)[1 +22%0/ (w - wy)*
— 8 (w = wg)t e ). (3. 26b)
On the other hand, if
4/ (w— w1, (3. 26¢)
F.T. Hioe and E.W. Montroll 1262



EM) = - 3w +nt/2\[1+ (- wy)?/8n2?
— (- wy)/1280%21 -+ - ). (3. 26d)

One might be concerned about the fact that (3. 26d) does
not yield the unperturbed energy levels as A~ 0. This,
however, is irrelevent because (3, 26d) is not valid for
A=0 in view of (3. 26¢). Normal perturbation theory
would yield only (3. 26b). It would imply the existence
of a divergence as w — w,. It is clear from (3. 26) that
it is not a characteristic of the model but only of the
application of a series expansion outside of its range
of convergence. This suggests that if we develop ap-
proximation technique for the discussion of the energy
levels of the full Hamiltonian (2. 1), we should be alert
to the need for different kinds of expansions for differ-
ent regimes in the space of the basic parameters of the
problem, w, w,, #n, and X,

Let us return to expression (3. 16), Factorizing the
matrices corresponding to the determinants X and Y
into product of lower and upper triangular matrices,
we write for X, :

— —_

A =~ Copmst
-1 Ayt = Copms2
-1 ay4
L - -t —_
[ 1 Y11 7y
lyy 1 V2 Va3
Iy 1
i A -

Equating both sides, we get
Y11=y
and, for 2>1,
(i) Vpp = Comipal = lk. 2e1Y put, 29
(1) Ly et¥retie-1 =— 1,
({i1)  7petyn = = Comepete
Combining (i), (ii), and (iii), we get
Vi = et = Comret/ Yoot pet 10T B> 1,
Since
Xt =711Y22° " Vnet, mets

Xm =711722° " Voums

we get
Xmy 1 !
Xm Vmm (- Cat
- Tm~1. m=1
1
B C.
a_1 - =1
Ap=C2
3—C3
LI R p— c-m+1
a-m
Similarly,
Ym+3 _ 1
Ym+2 a - _C_2
a2 - 2@
az= Cy
res = Cop
a

Ed

Substituting (3. 7) into the above expressions, we find that A()) is given by

1
A(N) == nx?
By=A()+ = (- 1)A
2
Ba-A()+ = (n—=2)A
B A+ ==X
— (n—m+1)A
B-m+1—A()\)+W
- (n+1)A° L , M,
51—A(7\)+— (n+2)22 _
By=A() + = (n+3)a
8= AQ) + — (n+4)22

Bm-1 - A(A) +

where By, =2k - 1w +w;, By, =2kw, k=0,£1,+2,--,
and where the first continued fraction in (3. 27)
terminates at m =n. A similar expression was given

by Swain® using a different method. Continued fraction
expressions were also used for various purposes by
Autler and Towns, " Schweber, ® Stenholm and Lamb, ?
and many others. 1 As with the determinental expression
(3.16), A(A) can be solved iteratively from (3. 27) by
substituting A(\) =A;x+A,2% +- -+ into it and comparing
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- (n+m)A?
Bn =AM

3.27)

::oefficients of like powers of A on both sides. The

remarkably clear layout of expressions in (3. 27), how-
ever, has the advantage of providing one with a clearer
understanding of the structure of the perturbation series
in various regimes of interest, as we shall discuss in

the next section.

We want to point out that the results of this section,

expressions (3. 16) and (3. 27) among them, can be

derived without assuming the eigenvalues E®"(x) and

F.T. Hioe and E.W. Montroll
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eigenfunctions f”"(\;u, v, z) to be power sevies in A. In
fact the recursion relations (3. 6) can be derived with-
out using the results of the previous section. Skipping
Egs. (3.1)—(8.5) in the beginning of this section, we
let

E%"(\) = 20w, +nw + A%T(2) (3. 28)
and

fo, "()\;u, v, Z) :u“"’)/22)(1'°)/22"B°'"()\;u, v, Z). (3. 29)
Foro=-~1,

E(\) =~ 3wy +nw +A(R) (3.30)
and, in accordance with (2. 10),
fosu,v,z)=ve" +vz"k§/n (U (A) +uv 1V, (M) ]2*

=vz" 0, {[Gk’g + U, ()] +uv v, (N2, (3.31)
-2

where U,()) is set equal to zero to satisfy the initial
condition. Substituting (3. 30) and (3. 31) into the eigen-
value equation (2.3), employing a similar method used
in Appendix A for cancelling out the factors »z" on both
sides by making use of the relations given by (A7), and
then comparing coefficients of z* and uv~!z* on both
sides of the equation gives us two recursion relations
relating the U,(A)’s and V,(A)’s. The same argument as
that given in Appendix B now gives U,(x) =0 if k is odd
and V,(3) =0 if k is even. The recursion relations (3. 6)
immediately follow.

The difference between the recurrence relations (3. 6)
and the recurrence relations (2. 9) becomes clear if we
compare Eq. (3. 8) with the recursion scheme shown in
Fig. B1 in Appendix B. The assumption of power
series in A for the energies and the eigenfunctions fixes
a starting point (the zeroth order in 1), so to speak,
from which one can proceed to calculate the relevant
quantities order by order recursively. The recurrence
relations (3. 8), on the other hand, do not have this
property and must be solved in a different manner.

4. PERTURBATION SERIES FOR £(7)

We have seen that the energy eigenvalues correspond-
ing to the quantum numbers ¢=-—1 and arbitrary » are

4.1)

where A()) is given by (3. 27). As noted earlier, A())
can be solved iteratively. Let us examine this idea more
carefully. By letting A(\)=A;x+4,2% +-+ -, the second
continued fraction in (3, 27), expanded in the normal
way in which A()\) is assumed to be sufficiently small,
always gives an expansion consisting of only even
powers of A (except in the trivial case w =w;=0). The
same is true with the first continued fraction in (3. 27)
if B.4#0 {i.e., w#w;). Thus if w+#w; and provided that
A()M) is sufficiently small, we shall get an expansion of
A(X\) which consists of only even powers of x:

E()\) == 5wy +nw +A()),

AN =AM+ AN+ A - - 4. 2)
where
Azz-w+(2n+1)wo’ @. 3)

PR
w? = w}
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B n n=-1 n+1 n+2
Ag= (w—w0)2<A2+—2w)— (w + wy)? <A2+ Zw)’

" n-1 n—2
Ag=— ((.o--wo)z{A‘iJr 4wt (A2+ -3w+w0>
1 n-1 n+2
+—w+we<A2+—2w) [A4+

40t
n+3 1 n+2\?
X<A2+ 3w+w0>+w+w0 (A2+ 2w ) ]’
etc. As with the appearance of the resonance factors
{(w - wy) in the denominators of the coefficients 4,, A,,
and Ag, it is easy to see that third order resonance
factors (3w - w;) begin to appear in the denominators
of Ag and the fifth order resonance factors (5w — wg)
begin to appear in the denominators of A;;, and so on.
The presence of such factors in a perturbation series
implies trouble which normally compels one to devise
“tricks,” such as summing a certain subset of terms
of the series to avoid the divergence caused by the
possibility of w=w, or 3w=w,, etc.; the use of these
tricks is forced because one attempts to apply the same
perturbation series to handle all cases, We now wish to
demonstrate that prevention, namely, getting the cor-
rect expansion from the start, rather than curing,
namely, employing tricks, is the preferred policy. If
w =wy, one should, of course, set 38, =0 in (3. 27) be-
fore expanding. Then letting A(\) =A A+ AN+ -+ we
see that the first continued fraction now gives an ex-
pansion in all powers of A. By comparing the coeffi-
cients of like powers of A on both sides of the resulting
equation, we obtain an expansion!!

n+1
(w + wg)?

(4.4")

1 n3/2 n
Sty e s R
ANy=nt’n 2wx 8w2)‘ ™ by
13n5/27\5( 20 >
T Teset U1/ T (4.5)

Thus, in a proper expansion, factors (w — w,) never
appear in denominators, Furthermore, (4.5) turns out
to be different from the series (4. 2) in its structural
form,

If w is not exactly egual to w, but is very close to it,
a perturbation expansion for A(x) can also be obtained
by iteration from (3. 27) by expanding the right-hand
side of it in the right way. We let, in this case, A()) be
a series of powers of 8;:

A =A)(\) + BB+ By(W)BE +- -+

Substituting this into the left- and right-hand sides of
(3.27), and expanding the right-hand side in powers of
B.;, then equating the coefficients of like powers of 8_;

{4.86)

enables us to determine A;(A), By(x), Bs(1), -+ succes-
sively. Thus we find that A;(M) is given by
n)\z 9
AN == ——=  —~ -1 9142
- A\ + ———-—B-Z “AL 00+ _ﬁ_z_)_;\_
(n+1)A° .
- = (2 2 4.17)
—AN)+ ————= —~(n+3)
& 0()+52‘A0(K)+—‘—“~(,_. .
Substituting
F.T. Hioe and E.W. Montroll 1264



(4.8)

into both sides of (4.7) and comparing the coefficients
of like powers of A enable us to determine 4y, 4,, 4,
Ay, -+ successively, It is clear from (4.7) that Ay(M)
reduces to the A(\) given by (4. 5) if w is set equal to
w,. The first few coetficients of A;(A) are found to be

Ag=nll?,

A2=2"_w - wrirwo(1+rlz>’

1 (140)- T (143),
A4:8L:>3(1+§t —;1§> +E)2—(£_—-@(1—-2+%)

———’i-—(l 2+l)_,‘_’i_<1+_1.)
T 2wlw +wy)? TR T (@) n/’
4.9)

which, as can be easily verified, reduce to the corre-

sponding coefficients in (4. 5) on setting w =w;. The co-~
efficient B,(A) of B_; in (4. 6) is found to be given by the
following equation;

Ay = AN+ AN + AN+ AR +

2 —1)x2
BI(A)=-%{31(A)-1+%:—

x[31 2+ tn= 2 -Yzzjkz (BI(A) + =3 }?4)}‘2 (--- ))] }

-

(n+ 1) (n+2)A°
- B e
AL
3 4))°
<[ 52 o 5
3
where the Y’s are defined by (4.10)
42
S el Lk (oo 1 . @11
X-i-1+ii—— ) .
) X-‘-2+—(7l—"f.—2)7\
_ —(n+i+1)A\
Yi=Xi+ X ~ (n++2)\ ’ 4.12)
st — (n+i+3)0°
Xi*—
7=1,2,3,- -+, and the X’s being given by
X; =B — Ay(D) (4.13)
except
X (== A,(). (4.14)
Again by substituting
Bi(X) =pg+pA+poA’+ee- (4. 15)

into both sides of (4. 10) and comparing coefficients of
like powers of A we are able to determine pg, py, po, - -+
successively, We find

Po“

(SLad

1 nt/? 1
Py== 4wn1/2+2(w+w0) <1+71)’
ppom 2 fyo L _ 1N __ 2 (1 1
27T 4wt 4 4] dwwrw)\n  #?
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n 3 1
— o~ 4,16
+2(w+w[,) (1+2n+2n)' ¢ )

The equation for determining B,(}), the coefficient of
@, in (4.6), is also not difficult to find, and is given
by the following:

2 -1 2
By =~ 37 {Bz( )+ 20 EXOR

SR () LB ]

. (n—1)22 [310) N (n - 2)X

2 (n_ 3)A3 ]2
Yéz Y33 (Bi()\) - Y2.4 (e )>

_n B0 - L =1 [310) L= 2z)x2
Y%, Y%,

Y
(n 37\2 . ]}2 (n+1)2°
(B0 Co)lf -

2
{32(7\) e [Bz<x)+—g——‘"+§”* (o)
3

]

2
______(n—YZZ)A (vvr )

-3

()(()(JL%_)L

2
. (n+2)22 [31(?~)+ (n+3)n

Y3 Y3
(n +4)2% . ) 2 (n+1)2
(o B )] -
(n+2)\2 [ (n+3)\2
X{Bl(x) + ———Y§ Bi(\)+ ———Y%
2 2
X(Bl(x) SArx ))]} . (4.17)
Yy
We find that in terms of power series in A,
By(M =g/ A+qy+qr+---, (4.18)
where
1
q.q = W y @0~ 01

WAL (s
177 447 n 2] Blwrw)?t \ T 2n " 2

N 3n1/2 (_1. +l>
16w(w+w)\n  n2/°
It becomes clear that for the case w=~w,, the general
form of the perturbation expansion for A(}) is

(4.19)

AN =4,(0) + BA)B +CWBY/ X+ DB/ X% +
(4. 20)

where B()), C(x), D(x), - -+ are series in powers of A
beginning with some constants, namely, the expansion
of A()\) contains all powers as well as all inverse pow-
ers of A, although it should be remembered that the ex-
pansion parameter here is 8_; and not A. The interest-
ing fact is that here we have another form of the
perturbation expansion of A(\) which is structurally dif-
ferent from those given by (4. 2) and (4. 5). All these
expansions were derived, as we have seen, from the
same expression (3.27). The expansions were carried
out correctly from the beginning depending on the
regime of interest. Numerically therefore, (4.2), (4.5),
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and (4, 20) are expected to give a continuous curve as w
is varied around the value of w;, provided, of course,
that these series are convergent.

The perturbation series for the higher resonance
cases (Bw=wy, 5w=w,, etc.) are equally interesting.
From (3. 27) we see that if 8;#0, i.e., if w#w,, the
expansion of A(x) will consist of only even powers of
X irrespective of whether 8_; or S5, ete., is or is not
equal to zero [assuming that A()) is sufficiently small],
If 3w =wy, then, of course, we put B_3=0 in (3. 27) be-
fore expanding, and hence no (3w — w;) factors will ap-
pear in the denominators of the coefficients of A% and
higher powers of A. Since the factors (3w - w;) first
appear in the coefficient of 2% in the nonresonant series
(4. 2), it may be asked whether the coefficients A, and
A, in the correctly expanded series for the case 3w =w,
are equal to ones given by setting 3w =w, in (4. 3) and
(4.4). For A, the answer is yes, but for A, the answer
is no. This can be easily seen from (3. 27) as we ob-
serve that putting B_; =0 affects not only the coefficients
of A® and higher powers of X but also the coefficient of
A (but none of the earlier ones) in the resulting expan-
sion, The expansion A()) for the case 3w =w, is found
to be

AQ) =AN + A v A+ - (4.21)
where
Ay==(3n+1)/4w “.22)
and
n n-1 n+l n+2
A== g (Ao n-2 '16w2<‘42+ 2w)
-2w+
Ao — n-3
1T 4w

(4.23)

It is seen that setting 3w =w, in (4.3) and (4. 4) givés the
A, in (4, 22) but not the A, in (4. 23). The number

4w

in (4. 23) which is not present in (4. 4) is the contribu-
tion resulting from putting 8_; =0 before expanding.
The expression for A; is found to be

n n-1
Asz—m{A4+ n—2
(_2%_—_3
A_n-3
7 4w
n-2 n—=3 n-4
)
1T 4w
1 n=1 2
+2—w<A2+ n—2 )
- 2w +
A_n—3
2 4w

n+ 2)2]
2w

(4.23")

n+1l n+2 n+3 1
~ 16w [A“ 47 (A” 6w >+475<A2+
which may be compared with the expression for A; for
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the case 3w # w, given in (4. 4’). Similarly in the case
5w = wy, the correctly expanded perturbation series for
A()) will consist of only even powers of A without any
singular factors 1/ (5w — w,) in it, and the coefficients
Ay, Ay, and Ag, but not A; and higher order coeffi-
cients, will be equal to ones given by setting 5w = w, in
the nonresonant series.

For the case that 3w is not exactly equal to but is
very close to the value of w;, the perturbation expan-
sion for A(A) can be obtained by iteration in a similar
way as for the case w=w,. Thus we let

AN =A,(0) + B (M)B +Bz(7t)ﬁ.2.3 +ove (4. 24)

and substitute this into the left- and right-hand sides

of (3.27), then expanding out the right-hand side as
power series in 3_; and equating the coefficients of like
powers of 8_; enable us to determine 4,(x), B{(»), By(n),
successively, We find that A,(}) in this case is given by
the following equation:

2
Ay =-—E—
B-i_AO(K)‘*E_(n—Z% _(n_z)h2
9 — A+ ——— 5
0 - Ay - =3
fn+ 102
- o132
Bi—AO(A)+_—(—n—+_)L — (n+3)°
Bo— Ay(N) + ——— — (4N
63'A0(>‘)+——_.T~'
(4. 25)

In terms of power series in A, it is easy to see that
Ay(7) is a series in even powers of A beginning with a
term in A% and that it reduces to the series given by
(4. 21) on setting 3w =w,. The coefficient B{(A) of A5 in
(4. 24) is given by

2 2
By =~ %{Bim A

- 2 _ 2
[+ 232 (-1 220 L
2 2 2 3 2
- __T_(n +Y11)A {B1(h)+—-——(n +Y§M [31()\)4___(" +y3)7\
><<B1()\)+(i+?‘é)_7£(...)]}, 4. 26)
4

where the ¥’s are defined as in (4. 11) and (4. 12) but the
exception stated by Eq. (4. 14) is here replaced by

X.g=—A,(). (4.27)

Notice also the difference in the places where the -1
appears in (4. 10) and (4. 26). The equation for deter-
mining B,(A) in (4. 24) is also similar to (4. 17) but with
X_5 defined by (4. 27) and with the - 1 appearing after
the factor (z-2)2%/Y?; instead of after the factor nx?/
v3,. Noting that A,(}) and hence Y _; are series in even
powers of A beginning with terms in A* while the rest of
the Y’s are series in even powers of A beginning with
some constant terms, it is not difficult to see that the
expansion of A(:) for the case 3w =w, is generally of
the form

AN =A;(0) + BON B3+ COVBE + DO/ AT 4+ -,
(4. 28)
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where B{(A), C(A), D(A),* -+ are series in even powers of
A beginning with some constant terms. Similarly for the
case 5w ~w,;, the perturbation expansion for A(») is
generally of the form

AN =A,() + BONB5+ COIN' AL+ DOON’ B
+E()\)Bé5 +F(K)ﬂ§5/)\2 Foos,

We thus see that for cases of near resonance of third
and higher orders, the perturbation expansions of A(x)
contain terms in even and inverse even powers of A,

(4. 29)

We believe a great deal has been learned here which
will have many useful and far reaching implications on
the general theory of perturbation expansions. The
cause of many complications encountered in perturba-
tion theory can be traced to our insistence on getting an
expansion in power series of A and our not realizing
the fact that this power series may possibly take on
different forms in various regimes of interest. We see
that (3.27) is a perfectly good representation of the re-
quired solution and that if we do not insist on getting
an expansion of the form A(A\)=A;x+A4,2%+- .., then the
calculation of A(x) for any given A (sufficiently small),
w, and w, can be done in the following straightforward
manner from (3. 27): Truncate the continued fractions at
certain point, put in the values of A, w, and w; and then
some trial value of A(}), and perform iterations until
both sides are equal, the standard method being used
for choosing the next trial value of A(A) each time. We
then repeat the same operations as we let the continued
fractions extend, and hopefully the values of A()) so
calculated will quickly converge. The complications in-
volving resonances would not even come up. If we insist
on getting an expansion in power series of A, then we
should be prepared to accept and use possibly different
forms of that series for various regimes of interest.
Such flexibility in our thought is clearly useful even in
dealing with problems when, unlike the two-level model
discussed in this paper, we do not know how to make
the correct expansion right from the start.

We end this section by mentioning a “trick” used by
Shirley!? for the removal of the singular terms in the
Bloch—Siegert shifts., For very large »n, denoting n!/%x
by b, Shirley found from a semiclassical theory that
E(b) is given by

2w 2wy (w? +3wd)
EB)=(n-L 0 p2 0 0) 4
() =n- 3w+ ol — w% (w? - w§)3 b
+(32&»3(0)2 rof) 8wy e ...
W= wf)® 7 (wP- 0w} (Ow? - i) ’

4.30)

which, incidentally, agrees with our quantum mechani-
cal result given in (4. 2). 1 It was noticed by Shirley

that the square of [3(w — w;) +A(b)], where A(b) is the
perturbation part of E(b) above, is nonsingular at w =w,,
namely,

2w 2w
L - 2 _ Loy )2 0 p2_ 0 4
[Zlw=wo) + AB) P = Hw - wy)? + w+w0b @ rw)?
8(.00 (w2 - 5(.00)0 - 2(-0%) B5_ ...
(W +wg)3(9w? — wp) ’
(4.31)
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and thus A(b) can actually be evaluated at w =w,;, giving

Alb)=b(1 - b*/4w® - 3b%/16wr = .. . )1/2

=b- (1/8w?)b% - (13/128wh)b% - - - - (4.32)

It is seen that this expression is a special case of our
expression (4. 5) for general n, As far as we know, no
simple trick like that of Shirley will turn a nonresonant
series (4. 2) for general = into the resonant series (4. 5),
not to mention tricks which will turn (4. 2) into the high-
er order resonant series. Thus again the importance of
starting the expansion correctly (if one is really
needed!) should be emphasized.

5. A LIDSTONE EXPANSION FOR THE
PERTURBATION ENERGY

In this section we present a novel form of perturba-
tion theory which is not an expansion in any of the
basic variables of our Hamiltonian but rather one in
terms of a new parameter y which is chosen in such a
manner that when y =0 our Hamiltonian contains the
rotating terms only [cf. (3.19)] and when y=1 it con-
tains only the “counter rotating” terms (a'S*+aS7). We
thus choose it to be

H(y) = wS* + wa'a + 2\[y(a'S™ +aS") + (1 - y)(@'S* + aS)].
(5.1)

Our basic Hamiltonian (2. 1) is then H(%). The motiva-
tion for the introduction of H(y) is that we know the cor-
rection A(2x, 1) to the unperturbed levels (for 0 =—1)
—%w0+nw for y=1

A(22,1) =~ §(w = wy) + 3[(w = wy)? +16nA2]1/2 . 2)
as well as the correction A(2x, 0) for y=0,

A@2X, 0) = 3w +wg) — 2[{w + w2 +16( + 1)A2]L/2. (5.3)

A primitive zero order guess for the perturbation cor-
rection to the unperturbed levels — %wo +nw of H(y)
would then be the linear interpolation formula

A2, ¥) = (1= A2, 0) + yA (2N, 1), (5. 4)

Without further investigation there would be no reason
to assume that this approximation is more or less valid
for any special regime of w, wy, or \. It contains no
singularities or divergences.

It would seem natural to seek a systematic generali-
zation of (5, 4) which would be a symmetrical series ex-
pansion about two points y=0 and y=1. Since a Taylor
expansion about a single point completely characterizes
an analytic function, a two point expansion would seem
to have some redundancy. An appropriate two point gen-
eralization of the Taylor expansion was proposed in
1929 by Lidstone. !* It avoids redundancy by requiring
a knowledge of only even derivatives at the two points
about which the expansion is made, thus differing from
the Taylor expansion which employs all positive inte-
gral derivatives at one point. The Lidstone series of a
function f{(y) about the two points y=0 and y=1 is

) =DM 0) + O (L = v) +f " (DA (y)
+fIOMN (T =)+ e, (5.5)

where
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AV =7, N () =Au(y),

Ba—A@N,y) +=

A(0)=A,(1)=0, (5. 6)
The first few A {y) are
M) =y, M(y)=v(F-1)/8,
By(¥) =¥(* - 1)(3y* = 7)/360, etc. (5.7)
Note that when y= 3,
By(B) =%, My(G)=- 15, Aa(2)=5/768, - (5.8)
|
1
A(22,7) == 492" 7 7
B-i _A(z)\, .),) +M _ 4}/2(71_ 2)7\2
Ba=AQ), y)+ ————
— 492+ 1)A? 1 22t
B - A2, y)+ 22X 2N

By— A@N, 7)+

where ¥’ =1-7y, To obtain A”(2x, 0) and A" (2), 0), let

us write
A2, €)=A(2), 0) +eB{(\) +€2By(2) +€B5(N)
+€'By(0) +- - - (5.10)

Substituting (5. 10) into (5. 9) and putting v =¢ and 3’
=1—-¢, we see that to obtain the correct expansion on
the right-hand side up to e", the first continued fractions
should include fractions up to — 1(1 —€)*(n — 3)2Y/[B_,
—A(22,¢)] and the second continued fraction should in-
clude fractions up to =(1=-€)(n+50?/[8s=A(2),¢)]. Ex-
panding out in powers of € and comparing the coefficients
of like powers of ¢, we get, for the coefficients of ¢,

A(2x, 0) =~ 4(n + 1)2¥/[B = A2, 0)], (5.11)

which gives (5. 3) after taking account of the condition
that A{2x, 0)=0 when A»=0. Defining, for ¢=1,2,3,---,

c;=n+i,
fi=21/[B; =A@, 0)], f.=1/[B.-A@x0)], (5.12)
gi=1/(fil = dc; )\ i), 8.4=1/(FF = 4c X fiy),

comparisons of the coefficients of ¢, €, €, and € give

cu=n-—-i+l,

By(A) =8c A%y (1 +4c ), (5.13)
By(A) = (1 +4c 23D Y= degnlg - 16c1co\ gy
- 42 [1 - 1B (V)] (5.14)

By(\) = (1 +4e Y Y- 4e%g% (1 +4c 2 YF3)B; (V)
+32¢4c_ 1Y, 8% ~ 16c1cNflgh (1 + 4c32°f) By ()
+128¢,c5050 fPf; 85 + 8¢ NFP(1 - £1B1 (V)]
X[By(A) + 4cyXlgy] — 4e 2B (W1 - /1B (W, (5. 15)
By(A) = (1 +4c 237D (= deg X33 [ + 4c 2 BB (V)
= 8cNf o = 4ee g2 {Bo(N) + de N1 - faB (V]
+4c N A By (1) +4c o Xg 5k - 16eico) g}
X[(1+4c2%)By (V) = 8¢)*f3 [ — 16¢,c,) fg3{ By (1)
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A detailed investigation of the general theory of Lid-
stone series has been made by J. M. Whittaker!® and

D. V. Widder. ¥ We now proceed to calculate A”(2x, y)
and A"™{2X,y) when y=0 and v=1 so that we can con-
struct the first three terms in the expansion of A(2x,v).

When the Hamiltonian is given by (5.1), the continued
fraction expression for the perturbation part A(2x, y) of
the energy E™"(2X, y) can be readily shown to be

4'/'2(n—3))x2

(5.9)

- 492 (n+3)22
-4
B3"A(2A3 '}’)'*‘

Y2 (n + 4)r°

3

+4c A (1 = £3B (V] + 40 2By (M) + 4en2g, ]}

+ 8¢ 0 FE[1 - £,B; (M HB3 (V) +4c, %63 (1 + 4e 302 f2)B, (\)
= 8e)’fylh = de AL - £1BL(V][1 - 3fBi (V)]

X[Ba(N) +4conlgy] — 40X f[By (1) + deailgo ). (5.16)

A”(2x,0) and A" (2x,0) are given in terms of By()) and
B,(»\) by

A"(@2x, 0)=2B;()), (5.17)
A(2x,0)=24B,(\). (5.18)
Similarly, to obtain A”(2x,1) and A" (2x,1), we write
A@Rr,1-€) =A2X, 1) +eD{(\) + €Dy (\) +€2D5(\) +€'Dy(2)
oo, (5.19)

Substituting (5. 19) into both sides of (5. 9) and putting
v'=eand y=1-—¢, we see that, to obtain the correct ex-
pansion on the right-hand side up to €, the first con-
tinued fraction should include fractions up to

- (1-e)(n=-4)2"/[B.s— A@2x,1~¢)] and the second con-
tinued fraction should include fractions up to

~ (1 =€) (n+422/[B; - A(2x,1 - ¢)]. Expanding out in
powers of € and comparing the coefficients of like
powers of ¢, we get, for the coefficient of €,

A@RM 1) = =4 /[8, —AE, )], (5. 20)

which gives (5. 2) after noting the condition that A(2x,1)
=0 when r=0. Comparisons of the coefficients of

€, €, €, and € give us the expressions for D{(}), Dy(%),
Ds(7), and Dy(1) in terms of which A”(2x,1) and

A" (2x,1) are given by

A"(2x,1) =2D, (),
A"(2x,1)=24D,()).

(5.21)
(5.22)

The expressions for D;(}), Dy(}), D3(x), and D,{}) are
exactly the same as those given on the right-hand sides
of (5.13), (5.14), (5.15), and (5.16) respectively, but
with the ¢, f, and g now given by the following:
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ci=n—i+1, c,=n+i
fi=1/[By-ACNLYD), fu=1/[8-A@N\1)], (5. 23)
gizl/ fi- —4C¢+17\ff+1), g-izl/(f-ii'40-1-17‘2f-4-1)

. Thus we obtain
%S[A” (2x,0)+A" (22, 1)]
(5. 24)

fori=1,2,3,---
A@2x, 3)=3[A@2x, 0) +A(2), 1)] -

+ = [A" (@2, 0) + A" (@2, 1)] +-

which provides a useful and instructive alternative to
the perturbation expansions given in the previous sec-
tions. As far as we know, this is probably the first
nontrivial application of the Lidstone expansion method
in physics.

6. SUMMARY

We began our discussion of the two-level system with
a differential equation (2. 3) and obtained a recurrence
relation (2. 9) which we showed to provide a powerful
technique for numerical computation of the energies of
the system. We proceeded to obtain expressions in
terms of ratios of determinants (3. 16) and in terms of
continued fractions (3. 27) which we showed to clarify
not only the nature of the perturbation solution for the
two-level system in particular, but also of perturba-
tion theory in general. We have also presented a novel
and useful form of perturbation expansion (5. 24) using
an idea which may find applications in many other prob-
lems in physics.

APPENDIX A

In this Appendix, we give the derivation of the recur-
rence relation (2. 9) in a little more detail. Let us re-
write (2. 6) and (2. 7) as

E%"(\) = 25 AP (A1)
»=0

and

SO ,0,2) =f7"w, v, 2) 23 By ", 0, 20X, (A2)
where A$" = (0/2)w, +nw and f&™u,v,2)=u
and B "(u, v, z) is defined to be equal to 1, Writing the

Hamiltonian (2. 1) as
H=H,+)\H, (A3)

then substituting (A1) and (A2) into the eigenvalue equa-
tion for H

lhs = 7 N (H, + \H,)f,B,
purt

é NB, (Hy /) +fy(HB,) + Hy /,B, 1] (Ad)
and
rhs :(?;0 Apr> (fo qzu}qu)‘q>
= Aofy qu,‘Oqu +f0(ij,‘1A,v) <?:{)Bq)\“)
- éx’(BpAofO f, :2: AP_GBG>, (A5)

Comparing coefficients of ** in (A4) and (A5) and noting
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(1+9) /22)(1-0) /22",

that H, fy = Ay fp, we get

fo(HyB,) + Hy /B, = [y q@ ApB,. (A6)

fy can be factored out in HlfoB,_i, for if we write

fo=t*v%z°, where a= (1 +0), b=%(1-0), c=n, we have
the following:

. 0
zv—a- foBye1 =fo (au 1z +vz-a—u) B,.,

8z avaBp-i

d 3 3
= “1,-1 12 -1
_f(,(bcuv 2™ +cuz av+lmv 52 %5002 az)B"i’

0 -1 0
zu— SoBp1 =1y (buv zZ+uz 5;> B,
I
PPRETRLS

d d a?
= -1, -1 19 -1, 9

_fo(acu vz revzT AU v az> B, ;. (A7)
Thus writing out the operators Hj and H; in full, sub-
stituting (A7) into (A6), and cancelling f; on both sides,
we get

( 2 Vo 2B+ aulvz + vz
Woz\" Gy = V) TR 52| e ou

-1

2 2
2 bt
av+b“” az”‘avaz)

+ <bcuv" zlicuz

-1 4 -1, -1 10 -, 8
+{bcuv™' z +uz— | +\acu ™ vz" +cvzT —+auT v —
v ou 0z

a2 L
+v——>:|Bp_1_7‘ A, B,

Ju 9z as0 (a8)

Now substitutipg (2. 8) into (A8) and comparing the co-
efficients of #*v~'z* on both sides, we obtain the re-
currence relation (2. 9).

APPENDIX B

In this appendix, we shall exhibit the zero and non-
zero b,; , as given by Eq. (2.9). First let us show that
by;4,,=0 for & <n,

According to (2. 8), the nonzero b’s, which we denote
by the x’s, are shown in Fig. Bl as p and k increase,
Consider first the case {w;+kw+#0. From (2. 9), we see
that the contributions to b,,. , come from b,;. ..,
bytieonet, and by, ¢=1,2,..,,p-1, As p increases,
consider the ¥,;. , for which the outer most & value on
the left (= - p) become s equal to -~ (n +1), The contribu-
tions of this bp,y;., .(ns1y COmMe only from the terms
b,.1;.,241. But we see from (2. 9) that those terms con-
tain the factors (n +% +1) which are equal to zero for
k== (n+1) and hence bpy;.,.(ny)=0. For p=n+2,

Bi2;-, -tnszy =0 because b.y;.. _(nay) =0, and again
bpi2;., -tns1y =0 because of w+2+1=0. It is then clear
that all b,,; , for which & <% are equal to zero.

If iw,+kw=0, then, by rearranging the terms in
(2.9) and replacing p ~1 by p, we see that the contribu-
tions to b,,. , come from b,,. .1, b,;. 41, and b, 4,
qg=1,2,.,.,p-1, Then a similar consideration as
above shows that 6,,. ,=0 for & <n.
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We now show in a similar way that b,;; , =0 unless
i=0or 1 for 0 =—1, the crucial factors here being
(31 +0)+i+1]=i+1and [- (1 +0)~i+2]=i+2. For
p=1, i=~1, the contribution to 4, . comes from
byotsia,. i lwg+kw#0, and from by, . if iwy+kw =0.
But the factor (7 +1) which is zero for ¢ =— 1 makes
by;4,.=0. For p=2, by, 5 .=0 because by;_y,,=0 or be-
cause by, .y =0 in the case iw,+kw =0, and by, _; =0
because of the factor ({+1)=0 for i =~ 1, It readily fol-
lows that b,;; . =0 for any negative values of i.

For positive values of i, there is a nonzero contribu-
tion to by;4,. from by, ¢ and hence by;; . is nonzero. For
p=2, i=2, however, the factor (-7+2)=0 makes the
contribution from by;;, . zero, or in the case iw,+kw =0,
the factor (-~ Z+2)=0 makes the contribution from
by,s,. zero. For p=3, by, . =0 because by, . =0 or be-
cause by, . is zero in the case iw, +kw =0, and by, . =0
again because of -4 +2=0. It follows that b,,; . =0 for
all7>1,

In a similar way, it can be shown that b,;; ,=0 unless
i=0 or -1 for the caseo=1,

We now go one step further and show that the nonzero
b, ;r for i=1 or -1 are those for which % is odd, and
that this is so irrespective of whether iw, +kw#0 or
=0. This result is a consequence of the nature of the in-
teraction terms in the Hamiltonian and follows readily
by noting that b.,; , is “connected” to b.;;.q,. and b.,;,
and that the initial condition is b,;y,¢ = 0,,5. Thus,
imagine that (i, k) are coordinates of lattice points in a
square lattice; then only those lattice points which are
separated from the origin by an even number of steps
are related to the origin, Thus, for ¢=0, 2 must be
+2m, and, for i=1 or — 1, # must be + (2m ~ 1), where
m=1,2,0-.
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The gravitational and electromagnetic fields of a charged, rotating source are obtained by an

elementary algebraic method.

1. INTRODUCTION

It has been shown how the Kerr geometry may be ob-
tained very simply as a complexified Schwarzschild
geometry. '? According to the work of Schiffer et al. ,
here referred to as (A), one may reach this result by
first restricting the metric to the Kerr—=Schild form;
then the source-free field equations determine the null
vector field 7, that defines this metric. It turns out that
I, is a simple functional of a harmonic function y that
in general may be complex. If y is real, one has the
Schwarzschild geometry; and if v is complex, then one
has the Kerr geometry. Its real part (o) may be identi-
fied with l% and may be regarded as a generalization of
the Newtonian potential while its imaginary part (B) is
proportional to the specific angular momentum of the
source.

We shall here describe an elementary and straight-
forward extension of (A) to the case of a charged,
rotating source. In this case, which corresponds to the
Kerr—Newman geometry, the generalized Newtonian
potential is still 72, but it is not @ any longer. Instead
¢ and B are simply scalar potentials for the electric
and magnetic fields, respectively. Thus B determines
both the angular momentum density and the magnetic
field,

To obtain this result one combines (A) with the re-
quirement that the Kerr—Newman solution reduce to the
Reissner—Nordstrom solution when the angular mo-
mentum vanishes. The analysis is then greatly simpli-
tied by the ansatz that F,g° as well as [,, is a null
vector. Then it is only necessary to work with the
Minkowski form of the Maxwell equations. Within this
framework the role of the harmonic function y in deter-
mining the electromagnetic field, as well as the gravita
tional field, is very clear.

2. KERR-SCHILD METRIC

Let /, be a null vector whose contravariant compo-
nents are defined with respect to the Minkowski metric
7%, Then

14,=0 2.1)
where

1% =%, (2.2)
Define the matrix

L%=1%, (2.3)
Then

TrL=0 2. 4)
1271 Journal of Mathematical Physics, Vol. 16, No. 6, June 1975

and
L?=0, (2.5)
The Kerr—Schild metric is
Sas=Nag— 2mlylg
=T oy (87— 2mI"1g). (2. 6)
In matrix notation
g=n(I-2mL) 2.7
=nexp(- 2mL). (2,8)
Then
detg =detn exp(- 2m TrL) 2.9)
=detn (2.10)
by (2.4). Since V=g =1, it follows that
I =3,lnv=g=0, (2.11)
Also,
g =exp@mLin!
=(1+2mL)y.
Therefore,
g% =n"?+2ml°1® (2.12)
and
1%=g%,, (2.13)
The following relations may also be noted
ool =1",14=0 (2.14)
I, =a,0" (2.15)

where the bar denotes the covariant derivative. Finally,
by (2.11), the Einstein—Maxwell equations are

8o %~ T, Th =— k04, (2.16)

3, F" = J*, (2.17)
These are coupled by

~ 8as= g (ForFy = 3 gagFunF™) (2.18)
corresponding to the signature (+, -, -, -).

3. ROTATING UNCHARGED SOURCE
We discuss the Kerr solution first. Then one needs
to consider only the source-free Einstein equations

R,5=0. (3.1)
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Following reference (A) one may expand in powers of
m. Then the order m equations are

d.(n°"[aB, 7)) =0, 3.2)
while the order m® equations are
s, =~-Al, (3.3)

where A is a scalar. The order m! equations are satis-
fied identically and the order m*® equations are also
satisfied if (3.2) and (3. 3) are. ! By combining (3. 2) and
(3. 3) one finds

00 dg) =34 +B) ) +3{(A+B),] (3.4)
where
B=—1% =-23," (3.5)
Let us consider only stationary solutions
ol g
7 =0. (3.6)

Then the problem becomes three dimensional. Introduce
the three-dimensional vector x; such that
L=y, Lory)
and
7\1‘ )\i = 1.

(3.7a)

(3.7b)

The six 7j-components may be rewritten with the aid of
the remaining four equations of (3. 4) in the following
form:

Bph; 0y =p (B0, +0;);) (3.8)
where

p=(A+B)/2,. (3.8%)
By (3.7) one also has

X;0ph; =0 (3.9a)
and by (3. 8) and the preceding equation

Aedh; = 0. (3. 9b)

To solve the Egs. (3.8) and (3, 9) for the vector field A;
we follow (A) by writing these equations in the following
matrix form:

MMT=p(M+MT), (3.10)

Mx=0, (3.11a)

MT)=0, (3.11b)
where

M =0, (3.12)

where T means transpose.

4. LINEARIZATION OF THE MATRIX FIELD
EQUATIONS

Equations (3.10) are nonlinear in M or in 9;),. They
may be linearized as follows., Let

R=1-M/p. 4.1)
Then according to (3.10) and (3. 11)

RRT=1, 4.2)

Rx=RTx =1 {4.3)
1272 J. Math. Phys., Vol. 16, No. 6, June 1975

By (4.2) and (4. 3), R is a three~dimensional rotation
matrix and A is an eigenvector of R. R may therefore
be written in the following way:

R=exp(6A) (4.4)
where A is a three rowed antisymmetric matrix

AT==A, {4.5)
Let us put

Aon = Emnp Ape {4.6)

Then R describes a rotation of & about the unit vector

2,. Define
P=-A% 4.7
Then P is the matrix
Pon= 0 — Ay (4. 8)
and
P=P, (4.9)
AP=PA=A, (4.10)
Therefore,
R =exp(6A)
=1-P+Pcosb+Asing 4.11)
and by (4. 1)
M =p[1 - exp(6A)] (4.12)
=aP+BA. (4.13)
Also,
Px=AX=0, (4.14)

so that (3.11) or (4.3) is satisfied. Here @ and B are
two new functions related to p and @ by

(4. 15a)
8=~ psiné (4.15Db)

according to (4, 11) and (4. 13). Then (4.13) is the de-
sired linearization of (3. 10).

a=p(l —cosd),

Let us rewrite (4. 13) and (4. 14) in terms of a new
complex function y and Hermitian matrix /| defined as

y=a+iB, (4.16a)
M=P—il. (4. 16D)
Then (4. 13) and (4. 14) become
M=Rey/, 4.17)
M A=0, (4.18)
Notice the useful relations:
AN =i, (4.19)
P =M, (4. 20)
ME=2/, (4.21)
M T =pm* =0. (4.22)

Equations (4. 17) and (4. 18) are equivalent to (3.8) and
(3.9). They may be regarded as differential equations
for the two independent components of the X; if the func-
tions @ and 8 are known, or alternatively as conditions

Robert J. Finkelstein 1272



on the functions « and g if the vector function A; is
known. In (A) it is shown how the vector functions );
may be eliminated altogether to give a simple differen-
tial equation for the complex function y. We shall now
show how the derivations of (A) may be slightly sim-
plified by working directly with the complex function y
and the Hermitian matrix/ rather than with the sep-
arate components of y and the vector field ;.

5. DIFFERENTIAL EQUATIONS FOR THE COMPLEX
POTENTIAL (y)

The following relations are easily verified:

3sMip = 0pMys, (5.1)
AdM =0, (5.2)
AN is==vMin (5.3)
OpMes == 272 (5. 4)

Contract (5.1) with x,. Then by (4.17) and (4.18) and by
(5. 2) and (5. 3) one finds
Re[ksas?’ + 72]/}/’ in=0
and therefore
Adgy +¥E =0, (5.5)

To obtain a second differential equation for y, antisym-
metrize {5.1) with respect to i and s. Then write in
terms of /] by (4. 17) and contract with respect to ¢ and
k. One then obtains

Re[28,y = v0uMus— 257/Mas] =0 (5.6)
Then by (5.4) and (5. 5) one finds
Re (/] s0¥) = 0. (6.7
By (4. 19) one finally obtains
M sy =0. (5.8)

Equation (5. 8) is a concise statement of the following
two vector equations of (A):

Va=(F - aP)a-vBx), (A.4.20)

VB==2aBr+VaXy, (A. 4. 22)
Note also the following useful relation

M anBey® =2P,0,v*. (5.8%)

Equations (5. 5) and (5. 8) together determine the two
components of y. Moreover, by differentiation of (5. 8)
one tinds

M suCry + M sp0s0py =0.

This is a second order equation for y. Using (5. 4) and

(5. 5) one finds
viy =0, (5.9)

Therefore, ¥, and both & and 8, are harmonic. Denote
tha reciprocal of y by w. It satisfies (5. 8) and also the
eikonal equation:

M 0w =0, (5.10)

(B,w)(2.w)=1. {5.11)

These same equations hold for both Vw and A. w is not
harmonic but satisfies
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Viw =2y (5.12)

and therefore

v viw =0. (5.13)
Note also
Ao w=1, (5. 14)
Equations (5. 10) and (5. 14) imply
A= 0w — 1A 0w, (5.15)
The solution of (5.15) for A, is
e B e .10

6. THE KERR SOLUTION

So far only six of the ten field equations (3.1) have
been satisfied. The remaining four equations may be
written in the following form!:

Ryy=0— v42=0,
Ry,=0— V(l,2x,) =3,[(A +B),].

6.1)
{6.2)

These relations have in fact already been used in sim-

plifying the six relations R;; =0 to give (3. 8). To make

the present note self-contained we shall now review the
argument of (A) that the conditions (6. 1) and (6. 2) may

be satisfied by the choice

(6.3)

One may check that this choice is satisfactory by first
noting that (6. 3) satisfies (6. 1) since @ is harmonic. To
check (6. 2) observe that

V2, =8, Rey/l
=-2[y|™

1} = a.

(6.4)
by (5.4) and (5. 8). In a similar way one finds by (5. 8)

Zasyasxi:/n;‘sas|7!2’ (6. 5)
so that
VEn) == 2|y | Pyns + M A3 v 2 (6. 6)

This result turns out to be useful not only in checking
(6.2) but also in checking the field equations when there
is an electromagnetic source (paragraph 10), The real
part of (6, 6) is by (5. 5)

vE(an,) = 3]y |7 6.7)
It now follows from (6. 7) that (6. 2) is also satisfied if
lv]%=(4 +B),. (6. 8)

One already knows, however, by (3. 8’) and (4. 15) that

p=1y|¥/2a =(4+B)/2,. (6. 9)

Then (6. 6), and therefore(6. 2), is satisfied if I3 = a. At
this point the field equations (3. 1) are solved by (5. 16)
and (6. 3) in terms of the still unknown function y.

One obtains the Kerr solution by choosing the com-
plex harmonic function y to be

y=[xt 498+ (2 — @) /2, (6. 10)

Then
w=[x%+y%+ (z —ia)?]t 72, (6.11)
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Let

w=p+1i0, (6.12)
Then

pt-0t=r - a?, (6.13a)

po=—za, (6.13b)

pt— (2 - at)p? - 2%a% =0, 6.14)
where

¥ =5t vy? 422, (6. 15)

The connection between (p, o) and (a, f) is an

inversion:

s, Bz_#, (6.16)

p= B%E , T E (6.17)

(& +8)(p? +0%) =1. (6. 18)

If a=0, one has the Schwarzschild solution. Then p=7
and A, is the unit vector in the radial direction; the two
parts of y are a=1/% and 5=0.

In terms of p, which may be regarded as a rescaled
distance, one finds, in the general case

13 = a(p) =p*/(p* +a%2?), (6. 19)
A = (px +ay)/(p? + @?), (6. 20a)
2= (py - ax)/(0* +a?), (6. 20b)
s =2/p. (6. 20c)

These equations completely determine the initial metric
(2. 6) and the Kerr geometry.

In general the following relations hold:

AN +YAgy +2ZA3 =P, (6.21)
v =20, (6. 22)
-gg =ax, (6. 23a)
g—;’ - ay, (6. 23b)
% =az +afB, (6. 230)
0z

These equations are all obtained in a straightforward
way. For example, Eq. (6.22) follows from (5. 12),
These equations all have familiar limits when a —0

and p—~7. When a#0, we may interpret p as a general-
ization of the radial coordinate #, and ¢ may be re-
garded as a generalization of the azimuthal variable:
cosb=z/7,

Each of the two potentials (o, 8) depends on both the
radial and azimuthal variable, as shown in (6. 16). In
addition, one has the Cauchy—Riemann equations®:

o _38

0 30 (6. 24a)
Ja __ 2B (6. 24b)
o0 op
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7. THE KERR—NEWMAN GEOMETRY
By (2.6)

oo =0 — 21, (7.1)

Then 2mi2 gives the Newtonian potential in the weak
field limit and of course satisfies Laplace’s equation in
this limit. We have just seen, however, that [3= a is
correct for all field strengths and therefore lﬁ always
satisfies Laplace’s equation as long as the electromag-
netic field vanishes. Therefore, lg may be regarded as
a generalization of the Newtonian potential,

We now seek the correct generalization of /2 in the
case that the source is charged as well as rotating.
Let us assume

15=9(Q,a, p)a(p) (7.2)

where @ is the charged and ¥(@, @, p) is a new function to
be determined. The case already considered corre-
sponds to

(0, a,p) =1. (7.3)
Guided by the Reissner~Nordstrom solution we try
2
219
ly= (1 2W>a(p) (7.4)

when 2 =0, When @¢#0, p is the natural generalization of
7. [see equations (6. 21)—(6. 23). ] Therefore let us try

9 _ Q*
fo= (1 T 2mp >a (p)

when a+0, It turns out that this ansatz for I? together
with the unchanged expression for the three-dimen-
sional vector A; [Egs. (6.20a)— (6. 20c)] describe the
exactly correct generalization of the Kerr metric to
the problem of a charged rotating source. This metric
defines the Kerr—Newman geometry. To support this
statement one must of course show that the complete
Einstein—Maxwell system (2, 16)— (2. 18) is satisfied.

(7.5)

8. THE ELECTROMAGNETIC VECTOR POTENTIAL

In order to investigate the complete field equations,
it is necessary to solve the inhomogeneous Maxwell
equations (2. 17). The homogeneous set of Maxwell
equations is satisfied identically by the usual represen-
tation of the covariant components of the electromag-
netie field in terms of the vector potential:

Fooa=0,A5— 254, (8.1)

The contravariant components are then related to F,
by

FoP=gg®F,, (8.2)
= (** + 2ml VWP + 2mIBIM) Fy, (8.3)
= PhF,, + 2mF,, (100 + ™R, (8.3%)
With our ansatz, namely,
1,=o, Lone), (8.4)
2
a_({_ € 5
lO (1 277’1[)) O‘(P)’ (8- )
it follows that the contravariant differ from the co-
variant components by terms of higher order in Q?
unless
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F, (%08 + 1418) = 0, (8. 6)

According to (2.17), however, 9,F*® must be linear in
Q, and (8. 6) therefore suggests itself as a possible
ansatz. We shall then assume (8. 6) and later verify
that the F,, actually do satisfy (8. 6).

Therefore, by (8.37), it is necessary only to solve
the equations

n“‘ns“as(axAu -9,4, =0, (8.7

except for the 6-function source. One may therefore
follow the usual analysis appropriate to flat space.

With the Lorentz gauge and the assumption of sta-
tionarity, we then have

divA =0, (8.8)
VeA, =0, (8.9)
veA =0, (8.10)

We are now assuming that !, does not enter the general-
ly covariant Maxwell equations. On the other hand, the
solution of (8.9) and (8.10) determines the source 6,
of the field equations that [, must satisfy, so that

Rl ]=~870,44,].

Therefore, the harmonic 4-vector A, must be a func-
tional of /,, and hence of &, 8, and »,. Consequently,

to find the harmonic scalar and vector potentials shown
in (8. 9) and (8. 10) it is natural to examine the two
harmonic functions « and 8. According to (6. 13) and
(6. 16) in the limit of large p

3
P 1
:__—p4+a222 ——B, (8.11)
8 2ap az (8.12)

Tptratzt | pv e

Therefore, in the limit of large p it is clear that Qo
behaves like the Coulomb potential while &3 goes into
the scalar potential of the dipole (0, 0, @a). This limit~-

ing behavior suggests that we put
Ay=Qa (8.13)

and that we look for a vector potential that gives the
same dipole field as the scalar potential Q8.

For this purpose note that 8 may be rewritten by
(6. 23c) and the nonlimiting forms of (8.11) and (8.12) in
the following way:

a dp

B:p2+a2§2' {8.14)
If one now defines a new scalar potential ¢ by
dp 1 _
D i@ (8.15)
then
_q8% e
B_adp 3z (8.16)
This new scalar potential is
1P
¢p=7tan" > (8.17)
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At large distances
1/n a
Y (A «1,
*Ta (2 o’ ) ve
This function is also harmonic, .
Vz(b = 0, (8. 18)

as one may show by direct computation with the aid of
(6.14), (6.23), (6.22), and (8. 15) which implies

Ve = !—)"2'1:_? vp. (8.19)
Next introduce the dipole moment vector
p=(0,0,Qa). (8.20)
Then
QB=uve. (8.21)

To find the equivalent vector potential we may make
use of the familiar vector identity

curl(u Xve) = uvie — (LV)(Ve)

== (LV)(Vo) (8.22)
since ¢ is harmonic. Then
curl(p X Vo) =~ (18:)(0,0) (8.23)
== 9, (1s9s0)
== 0,(QR). (8.24)
It follows that the vector potential
A=pXve {8. 25)

is equivalent to the scalar potential @8 in the sense of
(8. 24). In addition, A is also harmonic since ¢ is.
Therefore, (8.25) is a possible solution of (8. 10) and its
curl yields a dipole field at large distances according

to (8.24) and (8.12). The components of A are

- 3¢ _ _Qa
A"_-Qaay =— p2+a2(ay), (8. 26a)
—al® _ Qe
Ay=Qa % ptidt (ax), (8. 26b)
A,=0, (8. 26¢)
The complete four potential is then
B ay ax
A“_Qa(l, ot ——-———p2+a2, 0) (8.27)

The form of A, just given together with the earlier
prescription (8. 4) for I, completely describe the Kerr—
Newman fields. ¢ To verify that these forms are satis-
factory, one must of course satisfy (2, 16): the left side
of (2.16) depends on [, alone and the right side depends
on A, only. We may also verify that (8. 6) is satisfied.

9. THE ELECTROMAGNETIC FIELD AND ENERGY-
MOMENTUM TENSOR

The preceding work provides simple representations
of the exact electric and magnetic fields. The electric
field is derivable from the potential Qo by

E,=~ ak(Qa) (9. 1)

and the magnetic field is also derivable from a scalar

~ potential @8; since
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Hy == 2,(Q8) 9.2)
by (8. 24). Then
E,+iH,=~2,(Qy). (9.3)

One may therefore obtain the electromagnetic field of a
charged spinning source from the Coulomb field of a
nonrotating source by simply shifting the origin in the
complex z-direction and using (9. 3) as noted by
Newman, °
Then also
Q*(vy)? = E* - H? + 2/EH, (9. 4)

so that the real and imaginary parts of @*(vy)? give the
scalar and pseudoscalar invariants.

The energy density, to the lowest order in m, is

Q26y, = (E? + H2) /81 9. 5a)
= (Q¥/8mVyvy* (9. 5b)
= (Q/16m)V* (»*). 9. 5¢)

The Poynting vector is, to the same order,

6=~ Q‘ZgOk:Zl;eklmEle (9. 6a)

or
6=({QY/81)Vy X Vy*, (9. 6b)’
The Maxwell stresses are, for example when k#/,

- Q%0 = (1/47)(E,E; + HH,) (9. 7a)

= (Q%/4m) Re(3,7)(2,7%). (9. o)

Note that the basic relations (5. 5) and (5. 8) become

ME +iH) = QY (9.8)
and

M(E+7H) =0, 9.9
In component form (9. 8) is

AE=Q(a?=~ £, (9.10a)

AH=Q@((2aB), (9. 10b)

while (9. 9) may also be written in component form with
the aid of (9. 10) as follows:

E=Q(a? - A -HX), {9.11a)
H=Q(2apB)r+EXA, (9. 11b)

The Poynting vector (6) may be related to A with the
aid of (9.11) or directly by

~ 2Ry’ 0,y — i mnOmYOny™
. 9.12
* 7 )+ @0mn) (@) ©.12)

which in turn follows from (5.16). By (9.12) and (5. 5)

- 8rox=E’ + H: - Q3 (3*). (9.13)
The following 4-vector is also important here:

n,=F 0% (9.14)
By definition it is orthogonal to Z,:

n,l*=0; (9.15)

and by (9. 10a) it is also proportional to [,:
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n, =(EX),. (9.16)
Since [ is a null vector, » is also:

n,n*=0, 9.17)
In terms of », the ansatz (8. 6) becomes

n®18 — nf1¥ = Q. (9.18)

By (9. 16) it is clear that (9.18) is satisfied. By (9.17)
or (9, 18) one may also show that

F=F  Fof=n" 0P F ,F\ .. (9.19)

This invariant may then be computed directly from
(9.11):

F=2(H*~ E%

= 2[(H)® - (EN] (9. 20a)
=2Q*[(2ap)* - (o - &)°). (9. 20b)
10. FIELD EQUATIONS
The gravitational field equations are
Rop==870 (10.1)
where
Ru:}iimﬂm+l2€&8m2+132aﬂm3+;€0,3m4 (10.1%)
and
6 as =@ (Bas + O g + Bogm?), (10.17)
Here 1420‘,3 vanishes identically. Then
Rop=— 16760, (10. 2a)
122,,3:— 16neéa5, (10. 2b)
Igzaaz‘w”e;as, (10. 2¢)
where the parameter
e=Q%2m (10. 3)

is to be regarded as fixed.

Let us examine (10. 2¢) first. One finds

3
Rop=—4[(LaVa+1,V o) (VD) + VA 14) = 8e(n®/ Q") 1,

(10. 4a)
=0 (10. 4b)
where
V=134 o {10. 5)
1t follows from (10, 4a) that
Vi=0 {10. 6)
and from (10. 4b) that
V2 =0. (10.7)

Just as in the uncharged case V and ! are two orthogonal
null vectors. ® They are therefore proportional:

V,=—Cl, (10.8)

where C corresponds to the scalar A of the uncharged
source. Let us also introduce the scalar D that cor-
responds to the B used earlier:

D==2,1" (10.9)
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Using the form of /, that holds when the source is
charged, one finds

(10. 10)
(10.11)

Cly=3yy* - ol

Dl = 3yy* + all,
Proceeding now as in the uncharged case, one obtains

112(,3 = V(1 olg) = 34[(C + D)) = 3,((C + D) ], (10.12)
122(,6 =21 122, (CI*) + P (209 (3,1 ,) = 1 (3,0°)(3,.0,) = C*L.

{10.13)

The energy—momentum tensor of the electromagnetic
field contains terms of order m® and .

—4nQ25as=FmFem“— MasF) (10.14)
- 41TQ2é,15 = 2(nong + 1l L 4F) (10.15)
=[(EN)? + (HA)? )L oL,

or

— 470 5= (ry* )L L, (10. 16)
To check the first order field equations note that

}1300 =v2(18) = V¥ (a ~ eyy*)

= — €V2(yy*) = — 1676y, (10.17)

This result is in agreement with (10, 2a) as required.
For 1130;2 one finds
V2(I5n) ~ 3.[(C + D)) = V[ (0 —~ eyy* )] = 3, (v7*)
== eV (17 )

by (10.10), (10,11), and (6. 7). Then the 0k-component
of (10. 2a) becomes

V2 (yy*A) = 16764 (10. 18)

This equation may be checked by computing the left
side with the aid of (6. 5), (6.6), and (9.12) and com-
paring with (9. 6). Alternatively, (10.18) expresses
the Poynting vector very simply in terms of A,.

Finally, the jk-part of (10, 2a) is
VEIEAn) = 3,[(C + DA, ) = 3,[(C + DYy, = — 167ed,,
or
VE(ann) = Blyy* ] - 8,(vr*a)
=- 16ﬂ€5jk+evz(yy*7\j>xk). (10,19)

If @ =0, then 6;,=0 and the left-hand side of (10.19)
vanishes. The A, are not altered, however, by the pres-
ence of charge and therefore the left-hand side always
vanishes. We then obtain a simple expression for the

Maxwell stresses in terms of A,, namely,
1676, = Vz(y'y*)\j?\k) (10. 20)

provided that the corresponding field equations are cor-
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rect. Alternatively, to check the field equations one
must check (10. 20). For this purpose one may use the
following evaluation of the right-hand side:

VAo Aghe) =2 Re'yz()\,ak + X0 ) 7% + Z(YY*)ZGA
= i\ sEumn + M€ jmn) O ¥ Oy * (10. 21)

To obtain (10. 21) one may use (6. 5) and (6. 6). The
right-hand side of Eq. (10.21) may now be reduced to
forms such as (9, 7b). To check the second order field

equations one may reduce 12{‘,5 to the following form:

2
Rop=[D?— CP = 3,[1,(D + C)] = 1%(3,2,)) (21120 o L.

(10. 22)
The first order equations require
V@A) = 20,[(C + D), ] = - 167eby, (10. 23a)
or
= 28,[(C + D), = = 16mebyy — V2(l,) = 0 (10, 23b)
since n**6,, vanishes. Then
Ryp=[D* - C* = 28yy* 1L J, (10. 24)
=4e(yy*)ll,
— — 167¢d,, (10. 25)

by (10.10), (10.11), and (10.16) in agreement with
(10. 2b).
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1842 (1969). Signs of A, correspond to (8.1).

SE.T. Newman, J, Math. Phys. 14, 102 (1973).

fWe are concluding from (10.4a) that V is null because x is.
This argument may be reversed by first showing that V is
null in the following way. Let

Vy==Cl.
Then compute

Ve=198,1,

=198, (Ighy)

and find

V== Cl,
and therefore

V,==ClL,.

It follows that V is null because I is, One may then reverse
the argument of (10, 4a) to conclude that = is also a null
vector,
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Petrie matrices and generalized inverses
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The connection between Petrie matrices and a special group of generalized inverses deriving from an
incidence matrix is established. These matrices are encountered in the theory of the excluded volume
effect in polymers, but have wide applicability to other problems. As an example of one such
application we present a greatly simplified derivation of Lagrange’s theorem, which relates the inertial
tensor of a mechanical system to the distances between all pairs of particles.

I. INTRODUCTION

Petrie matrices recently have been shown to be useful
in graph theory with specific application to polymer
problems. !** These matrices are comprised of only
zeros and ones, with the stipulation that any ones ap-
pearing in a column must occur consecutively. In another
recent paper one of us obtained exact expressions for
the distribution function of the radius of gyration of the
Gaussian model of a polymer with excluded volume. 3
The method used there relied upon a special group of
generalized inverses. The main purpose of this com-
munication is to demonstrate the connection between
this particular group of generalized inverses and Petrie
matrices. An interesting aspect of the matrices con-
sidered here is that generalized inverses are intimately
involved with statistical theory.*'°:® One application of
generalized inverses, to the derivation of Lagrange’s
theorem, is made to illustrate the characteristics of the
matrices.

H. GENERALIZED INVERSES

The unique generalized inverse B, also referred to
as the Moore—Penrose inverse, of the singular or rec-
tangular matrix B, satisfies the following conditions:

(1) BB“1'B=B,

(11) B(-l }BB(-I):B(-U.
BBV =(BB"V,
B-1B = (B(-l )B)'.

(2.1)
(iii)

(iv)

Superscript primes indicate the transpose. Other types
of generalized inverses satisfy only select combinations
of the four conditions in Eq. (2.1). We follow Pringle
and Rayner® and designate such generalized inverses
as one-, two-, three-condition generalized inverses,
which respectively satisfy
(i) or (ii): one-condition,
(1) + (ii):

[(1) or (ii)] + (iii) + (iv): three-condition.

two-condition,

Let C be an NXN(N - 1)/2 matrix whose nonzero ele-
ments ¢,; are given by

IR (2.2)

where i=1,... ,N=k, k=1,...,N~1, and [ =N(k-1)
—k(k-1)/2=(N-%/2)(k - 1). The matrix C is the in-
cidence matrix of the directed star graph on N nodes.’

c =1, Cip,p1=—1,
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This particular representation is chosen because it
greatly simplifies the algebraic arguments presented
here. Any matrix equivalent to C by permutations and/
or sign changes of rows and columns would equally suf-
fice. Let U be an NXN matrix, all elements of which are
equal to 1. Let E denote the identity matrix of order N.
If A is a matrix satisfying the conditions

AU=UA=0, (2.3)

and if A“!) is a generalized inverse of A satisfying
AACV=E + XU,

AVUA-E+ UY, (2. 4)

where the matrices X and Y are arbitrary, then the
matrix

G(-l):CrA<-1)C
is the unique generalized inverse of the matrix

G=N2C’AC,
and both are members of an Abelian group. That G’
is unique can be shown upon considering the products
C’AACIC and C’A“VAC. A column of C contains only
two nonzero elements, namely, +1 and - 1. The product
UC is therefore the null matrix. Similarly, C’'U is null.
We arrive at the result, with reference to Eq. (2. 4),
that

C’'AAV'C=C’'ACDAC=C"C. (2.5)
It is shown in Appendix C that
CC'=NE-T. (2.6)

The products GG!’ and G"1'G are evaluated using Egs.
(2.5) and (2. 6) as

GG )= (N2C’AC) (C'A“H’C) = N"2C A(CC)A’C’

=N1C/AA“VC=N"C'C (2. 7a)
and
(=13~ AT=2(7 A (=1) ’
GG =NZ3C’A’CC’AC (2. 7b)
=NIC’A“VAC=N"IC’C.
From Eqgs. (2. 7a,b) it is easily seen that
GG =(GVGY,
GG = (GG, (2. 8)
Equations (2. 6) and (2. 7a, b) also yield
G(-l )GG(-I ) ZIV'IC'A('I )Cc /C — CIA(-l )C
=G (2.9a)
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GG’G=N"3C’'CC’AC=N"*C'AC
=G. (2.9Db)

Equations (2. 8) and (2. 9a, b) show that G’ fulfills all
the conditions of Eq. (2. 1) and is therefore the unique
generalized inverse of G.

We now show that G and G“!) are members of an
Abelian group. First note that the matrix N"1C'C, arising
in Egs. (2. 7a,b) and used in Egs. (2.9a,b), actsas a
generalized identity. That N"!C’C acts as a generalized
identity can be proved by considering the products
N-1C'CG'™ and G'™ (N"C’C), where

G(m):N-m-lcrA(m)C’
N-lc rCG(m ) — N-m=2 CrcclA(m )C
:iv-m-l C/A(m )C
:G(m),
G(m )(N-lc IC) :N-m-z ClA(m)CCIC
:N-m-l CiA(m)C

=G, (2.10)

where use has been made of Eq. (2. 6). It has been
proven elsewhere® and is readily seen that

GG = g1, (2.11)

Equations (2. 10) and (2. 11) suffice to establish group
properties.

The immediate application of this section to a physical
problem results when A is taken as the Rouse—Zimm
matrix for a linear chain polymer. We show in the next
section and in Appendix A that if A is the Rouse—Zimm
matrix, three different types of A“!’ can be constructed
which satisfy the requirements in Eq. (2.4). Hence
G can be constructed from three types of generalized
inverses of A. (The one-condition inverse is not con-
sidered. ) The first type, which is shown in the next sec-
tion to be a two-condition generalized inverse, leads
directly to a representation for G’ in terms of a Petrie
matrix. The second type, constructed in Appendix A, is
a three-condition generalized inverse, and the third is
the unique generalized inverse.

The importance of G’ is that the partition function
and the mean square radius of gyration can be expressed
as a particular expansion involving determinants of
principal minors of G'*!? of various orders.?® Though the
treatment in the following section is confined to the
linear chain, the arguments are sufficiently general that
they can be extended to other chain forms.

Il. THE CONNECTION WITH PETRIE MATRICES

A. A particular representation of G{-1!

We approach the connection between G’ and a Petrie
matrix in a somewhat circumspect fashion. Let H denote
the (N - 1) XN Petrie matrix whose elements are

hij: 1, jSi:
(3.1)

Let W denote the product H’H, with elements w 2 Elven
by

h”:(), j>i.
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N-1
wjkz iZ‘l, hijhik' (3.2)

For j <k, nonzero terms of the product are encountered
only for i =2 k, and therefore

w,,=N-Fk, j<k (3.3)
w,k:N —j, ] =k
where the last equation is obtained by symmetry.

We will now show that W is the two-condition gen-
eralized inverse of the Rouse—Zimm matrix A defined
by Eq. (Al) of Appendix A. Consider the product F = AW,

The three disinct cases which arise in evaluating
matrix elements f,, of F are:

(i) 1=1,
flk:Zi;(w 201 = W301,51)

=Wy~ Way
=04 (3.4a)
(ii) 1<I<N,
lez:iZ (2w ;8 = 138,10 =Wy, i)
=2 =Wy = Wiy e
when [ <k,
S p=2N=-R)~(N=-k)=(N~k)=0;
when / =&,
Fi=2N=-E)-N=-B)-(N-k=-1)=1;
and for [ >k, symmetry demands
S12=0; (3. 4b)
(iii) I =N,
Far=20 0, B yi=w by i) (3. 4c)
SWyp=Wyy,,=0—-1==1
when 2 <N. In more succinct notation
fp=04 I<N,
Suoe=—1+ B yer
Hence we may write F as
F=E - XU, (3.5a)

where the matrix X possesses a single nonzero (7, j)
element equal to unity in the (N, N) location. The
matrices A, W, E, U, X are symmetric; therefore,

F'=WA=E-UX. (3. 5b)
The Rouse—Zimm matrix A satisfies
UA=AU=0.

Use of Eqs. (3.5) allows one to show that W satisfies
conditions (i) and (ii) of Eq. (2. 1); however, since
F+F’, conditions (iii) and (iv) are not fulfilled. The
matrix W is a two-condition generalized inverse of A.
Furthermore, Eqs. (3.5) establish that W satisfies the
requirements of Eq. (2.4) and it may be concluded that

G =CcwC
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is the unique generalized inverse of G, where
G=N"C’AC,

The three-condition and unique generalized inverses of
A, constructed in Appendix A, also fulfill Eq. (2. 4);
thus G!’ may be obtained by at least three different
routes.

B. G'-1as a product of Petrie matrices

The connection between G’ and a particular Petrie
matrix may be established by evaluation of the product
D=HC, where H is defined by Eq. (3.1) and C is de-
fined by Eq. (2.2). We find, upon referring to Eqs.
{2.2), (3.1), that

Ay ger=RiCh 1 T 1 ek ininn

=his =Ry gew

(3.6)

where i=1,...,N-1, j=1,...,N—k, k=1,... N-1,
1=(N-k/2){k~1). Three classes of terms are en-
countered on evaluating Eq. (3.6). They are given by

(1) j>1i,

di1:=0; (3.7a)
(i) jsi<j+e,

di =1 (3. o)
(iii) j+ k<1,

di,j1=0. (3.7c)

The matrix D is thus one whose columns contain only
zeros and ones. If D is to be a Petrie matrix, then the
ones in each column must occur consecutively. The
condition in Eq. (3. 7b) shows that the ones in each
column do occur consecutively since the 4, , ;=1 for
j+k-1=i2j and vanish outside this interval. This ob-
servation allows us to cast Eq. (3. 7b) into the form

d 1,

where j=1,... ,N-k, k=1,..,,N~-1,
1=(N-k/2)k-1), m=1,...,k. All other elements of
the j +1 column are equal to zero. We conclude that D
is a Petrie matrix. Now,

G-'=C'WC =C’H'HC;
therefore,

G-1'=D'D.

Jom-b, o1

(3.10)

An example is provided in Appendix B which illuminates
the structure of these various matrices.

The rows of the matrix H, c.f. Eq. (3.1), may be
thought of as representing the possible contact pair
types, i.e., nearest-neighbor, next-nearest-neighbor
and so on. The columns of the matrix D, on the other
hand, represent all the possible combinations of pair
contacts. The correspondence between the columns of
D and the polymer chain is somewhat subtle. It rests
upon the interpretation of a column of D as a representa-
tion of a series of catenated steps or consecutive bonds
in the chain. Figure 1 is offered as an example of the
preceeding discussion.
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I

2 0 O]
3 0 0
4 —=|1 0
5 10
6 10
7 1 1 |
8 —af 1 1
9 0 1
9 10 9— 10 0 1
10 — 11 o 1
1m—2 0 |
12 —13 LO(L

FIG. 1. One-to-one mapping of chains into Petrie matrices:
The chain on the left has two contact pairs, (3,8) and (6,12).
The labeling 1 ~2, 2-3,..., 12-13, indicates catenated
steps or consecutive bonds on the chain.

IV. LAGRANGE’'S THEOREM

In the most general form, Lagrange’s theorem relates
the inertial tensor of a mechanical system to the dis-
tances between all pairs of particles. In the standard
form, the theorem relates the square radius of gyration
of the mechanical system of identical particles, defined
by

82 ___A\J-l Z r?y
i=1

(4.1)

where r, is the vector from the center of gravity to the
ith particle, to the interparticle distances |r,-r,| by®

s2=N"2 ZK‘IE(rk—r,)z, (4.2)

That this transformation is correct is easily seen
from the matrix representation. Let r'=[r],r},...,r%]
be a 1X3N row vector pertinent to a particular con-
figuration. Then

s*=N-r'r=N"'r'(E,® E,)r.
Substitution of Eq. (2.6) for E, gives
s*=N"2r'[(CC’ + U)® E,]r
=N2r'{(Ce E,)(C'® Ey)lr

since (Ug E,)r=0 by definition of the center of gravity.
The last rendition, Eq. (4. 3), is easily seen to be
identical to Eq. (4. 2).

(4.3)

The theorem is readily generalized to encompass the
inertial tensor for a system of nonidentical particles.
Let the vector from the center of mass to the ith parti-
cle in a mechanical system in a particular configuration,
be denoted r; as before. A constraint on the r, arises
from the definition of the center of mass according to

N
2omir;=0, (4.4)
i=1
where 1, denotes the mass of the ith particle. Now de-
fine the NX3 matrix R as

R=[XYZ]

where X, Y, and Z are NX1 columns consisting of x, v,
and z components of all the r,, respectively. (It is
readily seen that the calculation is not restricted to
three dimensional space.) Let M denote the NXN
diagonal matrix with elements
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m=mby,

equal to the masses of the particles. Upon forming the
sum of pre~ and post-products of Eq. (2.6) with the
matrix M, one obtains

M= (2N)[(MCC’ + CC'M) + (MU + UM)].

The inertial tensor

N N
S“B:‘Z_} mtx".’x‘i/é\—_‘{ m;

(4.5)

may be defined in matrix form as
S=[Tr(M)]"'R'MR. (4.6)

Use of Egs. (4.4) and (4. 5) allows this equation to be
written as

S=[2N Tr{M)]"* R’ (MCC’ + CC’'M)R (4.1

since UMR=0. Upon reverting to indicial notation this
is seen to be

Seb— 2020 (mx¥—-mx®)(xf—x5)+ (x¢=x9

IsisjsN

N
X (m:.x‘f.—mjxg)/ZN 2 my
=

If the masses are identical, Eq. (4. 7) reduces to Eq.
(4. 2) upon taking the trace of S.

V. DISCUSSION

The aim of this paper has been to establish a connec-
tion between two matrices which are intimately involved
in the problem of the linear Gaussian chain with ex-
cluded volume. The connection between Petrie matrices
and a special generalized inverse occurs at two levels.
The generalized inverse G“!’ is equal to the product of
a Petrie matrix (D) and its transpose. This Petrie
matrix is directly related to the specific pair interac-
tions in the polymer chain. Another Petrie matrix (H)
used in the construction of the generalized inverse con-
tains information referring to the number of steps be-
tween interacting beads in the polymer. One is lead to
speculate that matrices of the form C’A1)C, where A
and A"V satisfy Eqs. (2. 3) and (2. 4), can always be
written as the symmetric product of Petrie matrices for
a connected chain. If this is so, then molecules of any
arbitrary connectivity may be treated with Petrie
matrices as well as with C.

Section IV is representative of a direct application of
generalized matrices to a nontrivial problem. The usual
derivation of Lagrange’s theorem involves laborious
algebra and demands careful choice of reference sys-
tems. That the derivation is so simple with use of C is
illustrative of the comprehensive nature of this matrix.
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APPENDIX A

The elements of the NXN Rouse—Zimm matrix A
for a chain of N beads are given by

1281 J. Math. Phys,, Val, 16, No. 6, June 1975

a,;=26;=0;,5,1=0;,40, 1<i<N,

@, =8y, = 8,510

Ay;=0y;= 0y, 51 (A1)

Let V be a generalized inverse of A which satisfies
Eq. (2.4) with

X=Y=-N-E,

where E is the identity matrix of order N. The elements
of Vare

v = @NY il - 1)+ N =N -j+1)], i<j,
v, =N -+ V=DV -i+1)], iz},

and V is a three-condition generalized inverse of A
satisfying

(A2)

AV=VA=E —N-'U, which is to be proved. First, it
is seen from Eq. (A2) that V' =V, i.e., V is symmetric.
Consider the product AV. The elements of AV take the
following forms:

(AV)jj==0p0,;,+ 20y = Vg 1<E<H,
which:

(a) when i <3,

(AV)“: -N-l;
(b) when i =7, (A3)
(AV), =1 ~N-1.
(c) when i>j,
(AV),,= - N,
For elements of the first row of the product
(AV) ;=03 = vy
which:
(a) when j=1,
—1_ AL
(AV),,=1-N"% (A4)
(b) when j#1,
(AV)lj = -N-1.
For the last row we have
(AV)yy==vy,;+ 0y
which:
(a) when j=N,
—_1_nN-L
(AV)yy=1=N"1; (A5)

(b} when j N,
(AV)NJ:_N-I.

The explicit evaluation of AV along with the fact that A
and V are symmetric matrices lead to the desired re-
sult that

AV=VA=E-N"U, (A6)

where it is recalled that U is a matrix whose elements

are all equal to 1. Equation (A8) also shows that V
satisfies conditions (iii) and (iv) of Eq. (2.1), The
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matrix A obeys Eq. (2.3). This is sufficient for the
purposes of showing that V satisfies condition (i) of Eq.
(2.1). Since V has only positive elements, the product
VU cannot vanish., This fact suffices in showing that V
cannot satisfy (ii) of Eq. (2.1). Therefore the matrix
V is a three-condition generalized inverse of A.

Consider now the matrix R constructed from the
diagonal matrix A, of nonvanishing eigenvalues of A
according to

R="T; A;'T, (A7)

where A=TAT’; T'=T"; A is an (N~ 1)X{N~1)
diagonal matrix obtained from A by removal of the zero
eigenvalue, while T, is obtained from T by removing the
constant column and is of dimension (N ~ 1)XN, It has
been shown® that

AR=(ARY =RA=E-N"'U, (A8)

which, together with the fact that A obeys Eq. (2. 3),
establishes that R satisfies conditions (i), (iii), and (iv)
of Eq. (2.1). It also has been shown® that

T,U=0,

where O is the null matrix. This relationship and Eq.
(A8) suffice to establish that R satisfies condition (ii) of
Eq. (2.1). Hence, R is the unique generalized inverse
of A. Furthermore, Eq. (A8) shows that R satisfies Eq.
(2. 4) and thus is a third route to G,

APPENDIX B

Matrices for N=15 are given here to serve as ex-
amples. Reference to Egs. (2.2), (3.1), (3.4a,D) of the
text and Eq. (A2) of Appendix A allows us to write ex-
plicit expressions for C, H, W, V, respectively, as

Fl o 0o o0 1 0 0 1 0 1)
-1 1 0 0 0 1 0 0 1 0
c={o -1 1 0 -1 0 1 0 o0 o]
0 0 -1 1 0 -1 0 -1 0 0
o 0 0 -1 0 0 -1 0 -1 -1]
(B1a)
1 0 0 O 0
g_]1 1 0o 00 ’ (B1b)
1 1 1 0 O
1 1 1 1 0
4 3 2 1 0
3 3 210
w=} 2 2 210 | (Ble)
11110
O 0 0 0 O
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ﬁoesloj
6 7 4 2. 1
Vv=@/5))3 4 5 4 3 (B1d)
12 417 6
[0 1 3 6 10

Recalling that
G-'=C'WC=C'VC,
one finds? that

10001001017
0100110111
0010011111
0001001011
1100210212
0110121222
0011012122

G(—l):

1110221323
0111122233
1111222334

Alternatively, the expressions in Eqs. (Bla), (Blb)
may be used to represent G’ in another fashion. Since

D=HC,

one finds that

1000100101
D— 0100110111
“T10010011111
0001001011

It was shown in Sec. I of the text that

G“V'=D'D.

Each column or combination of columns in D is a Petrie
matrix. The matrix D represents the ten possible com-
binations of pair contacts, which conveys essentially the
same information as C.

APPENDIX C

Given that C is the NXN(N = 1)/2 matrix defined in
Eq. (2.2), then

CC’'=NE-1, (C1)

where C’ is the transpose of C, E is the identity matrix
of order N and U is a matrix of dimension NXN whose
elements are all equal to unity. The relation in Eq.
(C1) will be derived by explicit evaluation of CC’.

Consider the sum,

N(N-1)/2

’
CimComrs

(C2)
m=1

when i < 7. The only value of m for which c,,, differs

from zero, for a given ¢, occurs when m =i+, where!

is defined in Eq. (2.2). The only values of v for which

ch differs from zero occur for =7 or ¥ =i + k. By

i+l,r

stipulation ¢ < », and

‘;:l CimComp=Ci,ic1 Cliet, iopr
=(1)}-1)=-1. (C3)
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The matrix product CC’ is symmetric, and therefore all
off-diagonal elements are — 1.

Consider now the case when i =v. The only values of
¢, Which differ from zero are those for

m=i+1, (C4a)
or

i=j+k,

m=j+1. (C4b)

The values of k which are permitted, for a given value
of i in Eq. (C4a), are those for 1 sk sN-1i as Eq. (2.2)
reveals. Equation (C4a) excludes the case i =N, since

k must be greater than zero. Similarly, i=1 is ex-
cluded in Eq. (C4b) since k=1 and j > 1. The values that
j can assume in Eq. (C4b), for a given value of i, are
1<j<i~1, since 2 must be less than i. Thus three
cases arise in the calculation of the diagonal elements
of CC’.

(i) i=1,

N-1
r ’
23 CimCi= 27 C1,101C1,15
m 1

N=1
=2, (DW=N-1; (C5a)
k=1l
(ii) 1<i<N,
N-1 i=1
Zm> CimCmi= :L:/l Ci0tCiig ™ m=1 CiintChvtis
i-1
=N—i+ 2 (-1}~ 1)=N-1; (C5b)
=1
(iii) i=N, j+k=N,
N-1
? CamCmy = ;ZE Crenge1Cirt gon
N-1
=2 (=1)(-1)=N-1. (C5c)
= ;

Thus, the diagonal elements are all equal to N - 1. Upon
combining the results in Eqs. (C3) and (C5), and using
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the definition of U, we find that CC’=NE - U. An ex-
change of rows or columns in C with a corresponding
change in columns or rows in C’ leaves the product CC’
unchanged. If P represents a permutation matrix
obeying

PP'=P'P=E,
then
PCC'P'=P(NE - U)P’=P'CC'P=NE-U.

In closing, we note that N"!C’ is the unique generalized
inverse of C, since

(NIC/)C(N-'C”) = (N"'C")(E = N-'D) = N"'C”,
C(N'C')C=(E-N"U)IC=C,

cc’=(cery,

c'c=(cey.

The matrix C is associated with a directed graph. Its
unique generalized inverse N™'C’ is also intimately con-
nected with that graph. 1°
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The state of a system is characterized, in statistical mechanics, by a measure @ on I', the phase
space of the system (i.e, by an ensemble). To represent an equilibrium state, the measure must be
stationary under the time evolution induced by the systems Hamiltonian H(x), x€[". An example

of such a measure is w(dx) = f(H)dx;dx is the Liouville (Lebesgue) measure and f(H (x)) is
the ensemble density. For “nonergodic” systems there are also other stationary measures with
ensemble densities, e.g., for integrable dynamical systems the density can be a function of any of the
constants of the motion. We show, however, that the requirement that the equilibrium measure have
a certain type of “stability” singles out, in the typical case, densities which depend only on H.

1. INTRODUCTION

The macroscopic description of a physical system is
assumed in statistical mechanics to be given by a prob-
ability measure w on the phase space I' of the system“:
If A is a region of the phase space, ACT, then w(4) is
the probability that the phase point of the system will be
found in A. Equivalently, w(A4) is the fraction of systems
in the ensemble in the region A. To describe a system
in equilibrium the measure must be stationary under the
time evolution. Since the energy (Hamiltonian) H of a
finite system of particles is always a constant of the
motion, a measure given by a function of the energy
(times Lebesgue measure), w(4)=[,f(H)dx, will always
be stationary. Conversely, if the time evolution is
ergodic on all the energy surfaces Sz [specified by H(x)
=E] equipped with their natural microcanonical mea-
sures, then every stationary measure w given by a den-
sity p, i.e., w(A)=[,p(x)dx so that w(A)=0if [,dx =0,
will be of this form. %% If, in the other extreme, the
system is integrable, #* so that there are in addition to
H other “smooth” constants of the motion, then there
will also be stationary states whose densities are func-
tions of these constants of the motion.

Consider, for example, an ideal gas consisting of »
particles moving in a unit box with periodic boundary
conditions—the unit torus T3, The phase space of this
system is T°"X R%* and the time evolution 7, is given
by

T: (‘h, DY Y ST -Pg,,) =T,q,p)=(q+pt,p),

where (q,p) =x € T?*xR% =T and the addition is modulo
1. This evolution comes from the ideal gas Hamiltonian

o

n

H(q’ p) = 'Z;l %p%'
The p;, as well as H, are constants of the motion and
thus any ensemble density which is a function of p only
will be stationary under the time evolution.
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Nevertheless, the equilibrium properties of finite
systems, even those which are not ergodic, are usually
assumed to be determined by a density which is a func-
tion of H only.%? In this note we shall not discuss any
specific form of this function but consider justifications
of the assumption that the ensemble density is a function
of H only even when there are also other constants of
the motion present. 3 (It is known that all reasonable
functions of H lead to the same results for local quan-
tities in the thermodynamic limit. *)

There may, of course, exist singular stationary mea-
sures {not given by a density) which are not “constant”
on energy surfaces even if the system is ergodic on all
such surfaces.? It may be argued, however, that these
measures, which assign a finite probability to the sys-
tem being found in a region of the phase space A which
has zero (Liouville—Lebesgue) volume, i.e., [,dqdp
=0, should be irrelevant for explaining experimentally
observed behavior. Experimental results depend on re-
producibility and it seems plausible to assume that there
will be a vanishing “probability” for “preparing” a phys-
ical system in such a region. 2 We may then regard as
physically reasonable only those measures which are
absolutely continuous, i.e., have a density, with re-
spect to Lebesgue measure, We shall adopt this attitude
here and only worry about the justification of assuming
p(x) to depend on H only, [The microcanonical ensemble,
at a fixed energy E, is itself singular with respect to
Lebesgue measure dqdp; it may, however, be regard-
ed'? as the limit when AE — 0, of measures concen-
trated, with uniform density, on the energy shell
(E,E+AE), i.e., plx)=f(H)=const for E<H<E+AE,
and is zero outside this shell. As already noted the re-
sults, for large systems, are independent of this limit.]

While we shall be concerned here exclusively with
finite systems similar problems arise for infinite sys-
tems. In the case of infinite quantum systems, Haag,
Kastler, and Trych-Pohlmeyer® (HKP) have shown that
a condition of stability under local perturbations of the
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time evolution is useful for the characterization of
equilibrium states, i.e., under certain reasonable as-
sumptions the only stable states are KMS states. Their
argument may be adapted to prove a similar result for
infinite classical systems. ” In this note we wish to con-
sider the extent to which “stability” may be useful for
the characterization of equilibrium ensembles for finite
systems,

2. FORMULATION OF PROBLEM

The notion of stability which we wish to use is similar
to that used by HKP and may be described roughly as
follows: Let w be the stationary state given by the func-
tion f=f(H). If we perturb H slightly to obtain a new
Hamiltonian H, = H + Xz, we obtain a new time evolution
TM (= T}) such that there exists a measure w* (= w*)
[given by the function f(H + Ah)] which is (a) stationary
under T} and (b) “close” to w. We will say that a state
w stationary under T, is stable if there exists such a
family «*® which is close to « for all (sufficiently nice)
perturbations #. A state w which fails to be stable in
this sense should not be regarded as “physical” because
an arbitrarily small error in our knowledge of H could
imply that w does not even approximate a state station-
ary under the actual Hamiltonian time evolution,

To obtain a precise formulation of stability we must
decide exactly how w” is to be close to w. Since the only
use of the measure (or ensemble) is to obtain expecta-
tion values of physical observables, i.e., of functions
A(x), which (by the very nature of physical observations)
may be assumed to be smooth functions of x, x< T,
closeness should refer to such expectation values. We
shall write w(A4) and w*(4) for the expectation value® of
A, with respect to the measures w and w*, and will as-
sume throughout that H and all perturbations are € C*(T")
and that % is bounded. Some possibilities are:

(i) w*~ w in norm, i.e.,
[ ) —w@) | <e 4|,

where lim,,,e(x) =0, A= C(T'), the bounded continuous
functions on the phase space T of the finite system, and
(|4 = sup,r | A{x);

(ii) whzyw weakly, i.e., w*(d)zw(4) for all A< C(T).

Clearly, (i) implies (ii). It is also worth noting that
there is a natural dynamical formulation of stability
which is equivalent to (i).

(i’) T¥'w remains close (in norm) to w uniformly in ¢,
for any perturbation #, when x is sufficiently small,
i.e.,

lw(T}4) - w(@) | <e() ]| 4]
for all A< C(T") and all #.

To prove equivalence we note that (i’) follows from
(i) because

[0(T}A) - w(A) [<|w(TFA) - TR A) | + |wH(A)
-w@|=2m[A],
since w*(T}A) =w*(A) by the stationarity of w* under the

perturbed evolution and || 7} Af| = || A}, Conversely, if (i’)
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holds we may construct w* norm close to @ as a weak
limit point of the time averages w% of the measures

Tro (@r=1/T foT dt Thw),

Condition (i’) may be called dynamical stability: Sup-
pose a perturbation 3 is added to H at some time, say
t=0; then w will change with time for >0, If, however,
w satisfies (i’) and X is small then the expectation values
of physical observables will also be changed only slight-
ly even after very long times. (This remains true also
if the initial state is not exactly w but some state w’
which is close to w in norm.)

These conditions have quantum counterparts: one re-
places C(T) in the above by the C*-algebra B(#/) of
bounded operators on the Hilbert space // corresponding
to the finite quantum system—of a finite number of
particles in a finite volume. « and w* correspond to
normal states on B(#4) [i.e., positive linear functionals
® of the form A—tr(4p), A< B(4), where pc B(/) is
positive and tr{p) =1] which are invariant under the one-
parameter groups T, and T} generated by the Hamilto-
nians H and H + M, he B(}), respectively. For finite
systems H has discrete spectrum and corresponding to
states of the form f(H) for classical systems one has
the invariant states given by p=f(H) (e.g., p=e™®/
Tre-#%) for quantum systems,

In both the classical and qunatum situations, a state
given by a (reasonable) function f(H) will satisfy (i)
and (ii) and thus, also (i’). In the quantum case a state
is stationary if and only if [p, H]| (=pH - Hp) =0, so that
if H has nondegenerate spectrum, p must clearly be of
the desired form. Even if H is degenerate the restric-
tion of p to each energy level must still be the identity
if (ii) is to be satisfied, since any splitting of an energy
level may be achieved by the appropriate choice of per-
turbation. ® In the classical situation we need stronger
conditions that (i) and (ii) to obtain a general result.
Before introducing such a condition, in Sec, 4, we shall,
in the next section, investigate some consequence which
follow solely from the “weak stability” condition (ii).

3. SOME CONSEQUENCES OF WEAK STABILITY

Proposition 1: Let w be weakly stable under the per-
turbation % as in (ii), i.e., there exists a collection
w™ of states invariant under the dynamics generated
by H+M: which converge weakly to w, Then w**(Q) is
ditferentiable at X =0 on observables of the form
@ ={H, B} [the Poisson bracket (P. B.) of H with B] for
some B C}(T) (C! functions of compact support)® and

d—‘i W, BY),, =~ wllh, BY). (3.1)

In particular, if B is a constant of the motion {H, B}=0,
then

w(r, B} =0, (3.2)
Proof: For any Be Cé(l‘) the perturbed states
satisfy
0= i rh T&B _ AR
=7 WNT By =w ({H + 1, BY),
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or
1
3 WM, BY == 0™k, B,

The weak continuity of w* at X =0 implies therefore the

existence of the limit

N YA i M
lim + @*(H, BY) = - lim o*({k, B)

== w({k’ B})-
Since, by stationarity,

w({H, B}) =0,

the above limit is the weak derivative of w* on @ ={H, B}.

Proposition 2: If w satisfies stability (ii} and is given
by a CY(I') density p, then

{o,B}=0
for any B CHT') such that {H, B}=0.

Pyoof: By Proposition 1 {H, B} =0 implies w({k, B) =0
for any h e C%. In terms of p we thus have, using well-
known properties of the P, B.,

3.3)

0= [ dxplh, B}
= [ dx{ph, B} - [ dxh{p, B}
== [ dxnip, B}.
Since % is arbitrary this implies (3, 3.).

We have thus obtained a simple condition on w, (3.2)
and (3. 3), necessary for stability (ii).

The above arguments can be reproduced for quantum
systems, with the understanding that { , } stands for
the commutator., According to (3. 3) a state of a quan-
tum system, given by a density operator p, is stable
(ii) only if p commutes with all operators which com-
mute with the Hamiltonian H. Since H has discrete
spectrum it follows simply that p is a function of H.

No such general result can be expected for classical
systems as may be seen by considering integrable sys-
tems for which the Kolmogorov—Arnold—Moser (KAM)
theorem®* is applicable. It can be shown, see remark
at end of Sec. 4, that for such systems even the strong-
er stability condition (i) is not sufficient to insure the
desired result p =f(H).

The difference between classical and quantum sys-
tems appears to be due to the lack of a sufficient num-
ber of global constants of the motion in the classical
case, This prevents fuller exploitation of Proposition 2
whose usefulness depends on the existence of an abun-
dance of invariants., Even integrable systems, if they
satisfy the conditions of the KAM theorem, have only a
“limited” number of such constant (i,e., n constants
when T is a 2n~dimensional space), This shows up in
the requirements for KAM theorem that the frequencies
be incommensurable?; this reduces the number of
smooth invariants; e.g., for two uncoupled oscillators
there exists a function of the two phases which is a
(smooth) invariant iff the frequencies are commensura-
ble, Indeed, we shall now prove that in the extreme case
of a periodic system weak stability alone implies that
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p=f(H). We shall consider this case explicitly, despite
its limited applicability, to illustrate the method used
in the next section for more “typical” systems,

Proposition 3: Let w be a state of a periodic system,
given by a C}T) density p. I w is weakly stable [i. e.,
satisfies stability (ii)], then locally p is a function of
H ie.,

(3.4)

Proof: Denote by 7 the period of the system. Then,
for any Ae C{,

A) = [T dtA(T, %)

gradp is parallel to gradH,

is a constant of the motion. Proposition 2 now implies
that

0={p, &} ={p, J,7 at TtA}:fof dt{p, T, A}
= fofdt T! {p,A},

(3.5)
where we have used the invariance of p under T,. As-
sume now that gradp is not parallel to gradH at some
point x, One could then find on observable A, with sup-
port in a neighborhood of ¥, in which {p, A}> 0 along
the orbit of x., This would contradict (3. 5),

The typical (generic) integrable system is not period-
ic. Nevertheless its periodic points are dense in the
phase space.* In the next section we show how to obtain
a positive result for such systems at the price of im-
posing a somewhat stronger, and not so physical, re-
quirement of stability on the equilibrium states.

4. A STRONGER STABILITY CONDITION

As we have seen in Propositions 1 and 2, the weak
stability of a state w enables one to define, for each
smooth perturbation 2 of compact support, a functional
L,, whose domain are observables of the form

Q=1{H, B}, by
L,{H, B}) == w({r, B}).

L, was shown there to be the weak derivative of the per-
turbed states w™,

Definition: A state w satisfies stability (iii) if it is
weakly stable and if, for each k€ C%, the functional L,
is given by a C%(T') function f,, i.e.,
L,(H, BY) = [ dx f,(x){H, B}.
When w has a density p
[ axf,{#,Bt== [ dxpih, B
This gives after integration by parts, assuming p< CI(I),

- [ axBiH, f,i} = [ ax B{n, p}.

Since this holds for, essentially, any B it implies

- {H, =1, ol 4.1

Thus, for states given by a density, stability (iii) im-
plies that for each perturbation % there exists a C}(T")
function f, which satisfies (4.1). This condition is satis-
fied by p of the desired form, i.e., p=f(H), fcC!,
since
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{r, o} = A, fE)} = £ (H) {1, By={f" (H) 1, H}
and one may choose f,=f’(H) k.

We will now show that in the generic case, the con-
verse of the above statement is also true.

Pyoposition 4: Let w satisfy stability (iii) and be
given by a C! density p. If periodic orbits (under T,)
are dense in I and if the energy surfaces Sy are con-
nected then p is a function of H,

Proof: Let y € T be a periodic point with period 7. By
stability (iii), there corresponds to each ke C% a CH{I)
function f, such that

{p, nt=18,7,}.
Therefore, using the periodicity of the orbit through y,
we obtain

ff duip, h}(T,y) = [T dui{H, fi} (T,y)
0 0

_ fo L ATy AT - i) =0

for any ke Cg. By the same argument as in the proof of
Proposition 3, we conclude that gradp is parallel to
gradH at y,

Since the periodic points are dense the gradients of
p and of H are parallel everywhere. The connectedness
of energy surfaces now implies that p is a function of H.

Remark: The assumptions made in Proposition 4 can-
not easily be weakened as may be seen by considering
stability in integrable systems to which the KAM theo-
rem is applicable. ? (The ideal gas in a torus is such a
system. ) In these systems the phase space is decom-
posable into invariant (under T,) tori “most” of which
are stable under small (sufficiently smooth) perturba-
tions z: That is, except for a family of tori of total mea-
sure €(7), there corresponds to each T,-invariant torus
M a uniformly close T}"-invariant torus M* (on which
the 73" time evolution uniformly approximates the T,
evolution on M), Here ¢(A\)~0 as x—0 and M* is “dif-
ferentiably close” to M, Hence for any T,-stationary
measure which is given by a smooth “function of the
invariant tori” (i.e., a function of the “action variables”
parameterizing the tori) one may use the correspon-
dence M~— M" to construct a T}-stationary measure w*
which is norm close to w and even differentiably close.
Thus, unless the use of perturbations to which KAM
does not apply is allowed—in our argument % could be
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arbitrarily smooth—the proposition will not hold if we
replace in it stability (iii) by stability (ii) or even stabil-
ity (i). Stability (iii), on the other hand, will rule out
these cases because the derivative of w* at A=0 may

fail to be even a function and will certainly not be C?,

A positive result may, however, be possible if the w*
are required to be given by smooth functions, since this
is almost certainly not the case for the w* which can be
constructed by the use of the KAM theorem.
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Optical theorems for three-to-three processes are derived from S-matrix principles. These theorems
express all single, double, and multiple discontinuities across all combinations of normal threshold
cuts in terms of physical scattering amplitudes. The 2'® functions corresponding to all combinations
of sides of the 16 normal threshold cuts are determined by analyticity requirements and the
generalized Steinmann relations. These two conditions guarantee that these functions can be identified
with the corresponding functions in the Regge discontinuity formulas of Weis. This identification
provides for a possible enlargement of the scope of Regge—Mueller-type analyses of high-energy

processes.

I. INTRODUCTION

A multiparticle optical theorem is used in the studies
of high-energy processes stemming from the work of
Mueller. Mueller! originally showed that important prop-~
erties of inclusive cross sections follow from the as-
sumption that certain matrix elements of current opera-
tors enjoy Regge behavior. Tan’ then observed that
Mueller’s assumption about current operators could be
replaced by the S-matrix assumption that the scattering
function itself evaluated on various sides of normal
threshold cuts enjoys Regge behavior. Tan’s argument
was based on a multiparticle generalization of the ordi-
nary optical theorem, called the inclusive optical the-
orem, which was subsequently proved in Ref. 3. This
theorem formed the basis of further developments of
Mueller’s ideas.

These further developments are generally formulated
in the S- matrix framework, However, the proof in Ref.
3 of the underlying inclusive optical theorem is based
on field theory, and depends on off-mass-shell continua~
tions. The question thus arises whether this theorem
can be proved in the mass-shell S-matrix framework.

The inclusive optical theorem is a special case of a
discontinuity formula that had been proposed in early
S-matrix works. Tan gave a heuristic S-matrix deriva-
tion based on crossing. However, many possible cuts
stand in the way of on-mass-shell continuations to the
cross channels and the effects of these cuts were not
fully analyzed by Tan.

One purpose of the present work is to provide an S-
matrix derivation of the inclusive optical theorem for
three-to-three processes. More generally the purpose
is to derive formulas for all of the single, double, and
multiple discontinuities across all combinations of nor-
mal threshold cuts in three-to-three scattering func-
tions. These discontinuities are expressed in terms of
physical scattering functions, i.e., in terms of scatter-
ing functions evaluated at their physical boundary points.

The central problem in this endeavor is to determine
the 2! functions corresponding to all possible combina-
tions of sides of the 16 normal threshold cuts. A basic
requirement on these functions is that they continue
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around all normal threshold singularities in the appro-
priate manner. This requirement would seem at first
insufficient to determine these functions, but it turns
out to be very stringent, and it probably uniquely deter-
mines 26 018 of the 2'®=65536 functions. The remaining
functions are then determined by the generalized
Steinmann relations, * which must be satisfied if the func-
tions are to be identified with corresponding functions
occurring in the Regge discontinuity formulas obtained
by Weis. If this identification is made then the optical-
theorem expressions for the various discontinuities can
be equated to the corresponding Regge formulas, thus
opening the way to an enlargement of the scope of
Regge—Mueller analyses.

Our general optical theorems will be described pre-
sently. First the inclusive optical theorem and certain
related formulas are reviewed.

The inclusive optical theorem is essentially a formula
for the discontinuity of the scattering function across a
certain basic cut, evaluated on specified sides of each
of the other basic cuts. These basic cuts are cuts in the
channel energies that start at the lowest normal thresh-
olds and extend to plus infinity. This formulation is
based on field theory, and the use of channel energies
as basic variables, rather than channel invariants,
stems from the fact that the scattering function has sim-
ple cut-plane analyticity in the complex energy variables
if the 3-momenta are all held fixed and real.® In partic-
ular, the singularities are confined to the union of the
surfaces ImE, =0, where £, is the channel energy asso-
ciated with channel g.

For the three-to-three case the complex energy space
is five-dimensional, since one energy variable is fixed
by energy conservation. There are sixteen channels g
associated with basic cuts. These are the one direct or
total-energy channel, the three initial subenergy chan-
nels, the three final subenergy channels, and the nine
cross-energy channels that are defined by sets consist-
ing of one initial particle and two final particles, or by
the complementary sets consisting of two initial parti-
cles and one final particle.

The sixteen planes ImE, =0 divide the five-dimension-

Copyright © 1975 American Institute of Physics 1288



al space of imaginary energies into 2282 regions called
zones. Each zone is a cone-shaped region with apex at
the origin. The scattering function is analytic in each
zone, and has, for each zone, a corresponding boundary
value, which is defined by letting the complex point
p'=(p1,---, s approach the real boundary point p

={(py, -+ +,P¢ from within that zone. The inclusive opti-
cal theorem, for the three-to-three case, is essentially
a formula for the difference between two of these 2282
zone boundary values.

In the S-matrix framework the mass-shell constraints
are retained. Hence the energies are real if the 3-
momenta are real. Consequently, the zones defined
above do not intersect the (mass-shell) domain of defi-
nition of the scattering function. It is therefore neces-
sary to define the boundary values by a different pro-
cedure. This procedure uses the sixteen channel invari-
ants s,, instead of the sixteen energies E,.

The sixteen channel invariants s, are not independent
variables: They are functions of the eight independent
scalar invariants. Suppose for a moment, however, that
these sixteen variables could be treated as independent
variables, and that the scattering function had only
normal threshold singularities, and hence enjoyed cut-
plane analyticity in (sy, - - <, S3¢) space, with the singular-
ities confined to the union of the planes Ims,=0. In this
case there would be 2!® boundary values, one correspond-
ing to each combination of sides of the 16 cuts Ims,=0.
Stated differently, for every one of the 2!® subsets G of
the set £ of sixteen indices g there would be a boundary
value M%(sy, - .., S;¢) obtained by approaching the real
boundary point (Sy, « - -, Sy¢) from the lower-half s, plane
for every g in G, and from the upper half s, plane for

every g in the complement G=E~- G of G.

Actually the sixteen variables s, are not independent,
and the singularities of the scattering function are not
confined to the surfaces Ims, =0. Nevertheless, there
is a set of 2'® functions M°(p) that is analogous to the
set of 2!% functions M%(sy, - -+, $;) defined above. A
large number of these functions M®(p) satisfy the pri-
mary properties to be described next, and the rest sat-
isfy a weakened version of these properties.

The primary properties of the functions M®(p) are as
follows:

(1) M°(p) is analytic at all real p, except on certain
Landau singularity surfaces.

(2) M%(p) is a single analytic function: It continues in-
to itself around each Landau singularity surface by some
infinitesimal detour.

(3) M®(p) continues into itself around each normal
threshold singularity surface s, = (3 m,)* by passing into
the lower- or upper-half s, plane according to whether
g is contained in G or G. Here },m; is some sum of phy-

sical particle masses.

(4) MC(p) — MC4(p) vanishes if s,(p) is less than its
value on the leading g-channel normal threshold. Here
Gg=GU g.

(5) M(p) =M®(p) is the physical scattering function,
which is the connected part of the S matrix, divided by
(2m)* 64T p; = Dpg).
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(6) ME(p) = — M'(p). This property is Hermitian analy-
ticity: The scattering function evaluated below all the
cuts is minus the Hermitian conjugate scattering
function.

It might seem that these properties would be easy to
satisfy: One might try to define the functions M® by
simply continuing the scattering function according to
the prescribed rule around every normal threshold sin-
gularity surface, and continuing it according to any arbi-
trary rule around every other singularity surface. This
procedure does not work. For the way in which the func-
tion is continued around a normal threshold singularity
surface determines the way in which it must be continued
around any nonnormal threshold singularity surfaces
that emerge from it. And this determination fixes, in
turn, the way in which the function must be continued
around any normal threshold singularity surfaces into
which this nonnormal threshold singularity surface
merges. Consequently, it is not evident that a set of
218 functions M (p) satisfying the principal defining prop-
erties exists. And given that such a set exists it is not
clear that these functions can be expressed in terms of
physical scattering functions alone, as contrasted to
unphysical boundary values of the analytic continuations
of scattering functions.

A set of functions M®(p) that satisfy the primary de-
fining properties is constructed in later sections by first
constructing two sets of partial solutions, the T7¢ and
the T7°, The 2'® functions T satisfy properties (1), (4),
(5), and (8), with T° replacing M®, and half of (3); the
function 7¢ continues into itself around each normal
threshold singularity s,= (3 mj)z for g< G by passing
into the lower-half s, plane. Similarly, the 2'% functions
TC satisfy properties (1), (4), (5), and (6), with T5-¢
replacing M°, and the other half of (3); the function 7¢
continues into itself around each normal threshold sin-
gularity s, = (3 m,)2 for g G by passing into the upper-
half s, plane. For 26018 of the 2'=65536 possible sets
G the identity T¢ = T?-° holds, For these values of G
the functions M® are defined by

MG — TG — TE-G
Then the final condition, property (2), is proved. This
is nontrivial, because each M®(p) is constructed as a

sum of functions My(p) only one of which, M,(p)=M*(p)
=M(p), is a single analytic function.

Each of the component functions My except M, =M is
a unitarity-type sum of products two or more physical
scattering functions, or their complex conjugates. In a
field theory framework off-mass-shell extensions of the
scattering functions are introduced. Thus in that frame-
work the functions My, and hence also the functions
M®, have off-mass-shell extensions. Near the off-mass-
shell point p,=-«+=ps=0 all of the differences M®(p)
— M®(p) vanish, and hence all of the functions MS(p)
are equal. Thus in this off-mass-shell framework the
26 018 functions M€ are all different boundary values of
the analytically continued scattering function. They are,
accordingly, called boundary values of the analytically
continued scattering function, even though no mass-
shell path of continuation that links each function M° to

‘the physical function M is constructed in the present

work.
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By virtue of property (3) the boundary value M®(p) is
a boundary value from below the normal threshold cuts
corresponding to channels g< G and from above the
normal threshold cuts corresponding to channels g G,
For brevity this boundary value M®(p) is called the
scattering function evaluated below the cuts g G and
above the cuts g G. Similarly, the difference M® — M%
=M,° is called the discontinuity across the cut g evaluat-
ed below the cuts g’ < G and above the cuts g’ E ~ Gg.
The higher-order multiple discontinuities are defined
similarly.

For the remaining 2% — 26 018 values of G no functions
ME(p) that strictly satisfy all of the primary properties
have been found, and we believe that none exist, How-
ever, it is convenient, for reasons to be discussed later,
to enlarge the set of 26 018 boundary values M¢ into a
full set of 2! functions M® by means of generalized
Steinmann relations. This is discussed next.

The Steinmann relations can be formulated in terms
of the notion of overlapping channels, Two channels are
said to overlap if and only if neither of the two comple-
mentary subsets of particles that defines one channel is
contained in either of the two complementary subsets
that define the other. The Steinmann relations are equi-
valent to the following Sfeinmann discontinuity propevty:
If two channels g and % overlap then the discontinuity
across the cut g does not depend on whether it is evalu-
ated above or below the cut 2. The ordinary Steinmann
relations assert that this property holds for all disconti-
nuities formed from the 2282 zone boundary values, with
the cuts g and /2 identified as two of the channel-energy
cuts that separate these zones. The generalized
Steinmann relations assert that the Steinmann disconti-
nuity property holds for all discontinuities M¢ — M%¢
=M,° formed from the 2'® functions M°.

It is not obvious that there is a set of 2!'® functions M°®
that includes the 26 018 boundary values M® defined
above and that also satisfies the generalized Steinmann
relations. However, there is such a set, and it is uni-
que. In this set the remaining functions M¢ are given
by M® = 7% or M®=T%-¢ according to whether G or G
contains the direct channel label g=¢. This set of 2'°
functions M¢ satisfies the properties (1), (4), (5), and
(6), and, for each G, half of property (3). The remain-
ing half of (3) is disrupted by certain singularities that
are associated with closed loop diagrams. Thus prop-
erty (3) holds for the 2'®— 26 018 functions M°(p) in a
free-diagram approximation.

Property (2) does not hold in general for the 2'°
— 26018 functions M®, Thus these functions cannot, in
general, be identified as boundary values of the analy-
tically continued scattering function. However, the sin-
gularities that block the continuation are also associated
with closed loop diagrams. The situation is therefore
this: For 26 018 values of G there are boundary values
M®{(p) of the analytically continued scattering function
that satisfy all of the primary properties. This set of
26 018 boundary values is uniquely imbedded in a set of
216 functions M®(p) that satisfy (1), (4), (5), and (6), to-
gether with the generalized Steinmann relations. These
extra 2'% - 26 018 functions satisfy the two remaining
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properties, (2) and (3), in a tree-diagram
approximation.

The 2'® functions M®(p) are connected in a natural way
to the 2282 zone boundary values. Each of the 2282
zones lies below some set G of basic (channel energy)
cuts, and above the rest. Thus each of the 2282 zone
boundary values corresponds to one of the 2!® functions
M®, and in fact to one of the 26 018 boundary values MC.
It is shown in Ref. 4 that each of the zone boundary val-
ues is equal to the corresponding function M°, Thus the
full set of functions M® is an extension of the set of
2282 zone boundary values to a set of 2!® functions that
satisfies the generalized Steinmann relations. This ex~
tension is unique.? Moreover, each of the functions M®
can be expressed as a linear combination of the 2282
zone boundary values.* These results imply the unique-
ness of the set of 2!® functions M®(p) insofar as one de-
mands both their agreement with the zone boundary vai-
ues and the validity of the generalized Steinmann
relations.

A formula is given in Sec. II that compactly expresses
in terms of physical scattering functions each of the 2!¢
functions M®, and each of the single, double, and multi-
ple discontinuities formed from the set of 2!® functions
M®(p). The relevance of this formula to Regge theory is
now discussed.

Regge behavior in its simplest form is simply a fall-
off property of the scattering amplitude itself in certain
limits., However, under the impetus of Mueller's work
the hypothesis of Regge behavior was extended to cover
also discontinuities across the basic normal threshold
cuts, To get Mueller’s results, it is sufficient to as-
sume merely that the particular discontinuity that oc-
curs in the inclusive optical theorem enjoys Regge be-
havior. However, it then becomes natural {o assume
that the discontinuities across the other basic cuts also
enjoy Regge behavior.

This expanded concept of Regge behavior was explored
in detail and it was soon recognized that the Steinmann
relations impose important conditions on the structure
of the Regge vertices.® Ultimately, on the basis of many
works, Weis® obtained a general formula for disconti-
nuities that consolidates the tenets of Regge theory with
the conditions imposed by the Steinmann relations.

A fundamental aspect of the Regge hypothesis for
scattering functions is that the stipulated behavior holds
for the actual scattering function itself, not merely for
some part of the amplitude, or for some approximation
to the amplitude. Similarly, the stipulated bebavior of
the discontinuities should hold for the actual disconti-
nuities themselves, not merely for parts of the discon-
tinuities, or for approximations to the discontinuities.
Thus the question arises: What are the discontinuities
to which the Weis formula applies? The problem is that
this formula refers to discontinuities associated with the
various normal threshold cuts, but it is not specified
exactly how the functions on the various sides of the
normal threshold cuts are to be defined. To the extent
that the formulas are to be restricted to the disconti-
nuities formed from the 2282 zone boundary values de-
fined by the channel-energy cuts, the answer is clear.
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However, the Regge considerations are formulated in
an S-matrix framework, and there is no indication there
that the formulas should be limited in this way.

Within the S-matrix framework it seems natural to
define the discontinuities in question as the discontinu-
ities formed from the 26 018 boundary values M°(p).
These boundary values correspond to continuations
around the normal threshold singularities in the pre-
scribed fashions. Moreover, they are part of the unique
extension of the set of 2282 zone boundary values to a
set of 2!® functions M€ (p) satisfying the generalized
Steinmann relations. In the derivation of the Weis for-
mulas there is no restriction to the 2282 zone boundary
values, and hence the Steinmann relations used there are
actually the generalized Steinmann relations. Thus the
boundary values to which these formulas apply must
evidently satisfy these generalized relations. This re-
quirement uniquely determines the functions Me(p).

By the same argument the remaining 2!®~ 26 018 func-
tions from which the Weis discontinuities are formed
must be the remaining functions M°(p). These remaining
functions are not boundary values of the analytically
continued scattering function. However, they must, as
linear combinations of the 2282 zone boundary values,
fall off in the Regge manner, if the zone boundary values
do. Hence there seems to be no reason to restrict the
Weis formulas to include only those discontinuities
formed from the 26 018 boundary values. If the remain-
ing discontinuities are to be defined at all as differences
of well-defined functions, then these functions must be

the M°(p).

It seems therefore reasonable to propose, within the
general framework of contemporary Regge theory, that
the discontinuities specified by the Weis formula are
the discontinuities formed from the 2'® functions M°.
This hypothesis, together with the general discontinuity
formula discussed earlier, adds substantial new condi-
tions to Regge theory, for it allows the detailed Weis
expressions in terms of Regge parameters to be identi-
fied with corresponding expressions in terms of physical
scattering functions.

The first application of this hypothesis, which will be
described in a later work, is the derivation of a unitarity
type relation for particle—reggeon scattering ampli-
tudes. This relation is identical in form to the unitarity
equation for a two-particle scattering amplitude, except
that one initial particle is replaced by a reggeon and one
final particle is replaced by a reggeon.

The plan of the paper is as follows. In Sec. II the no-
tation is introduced and the general formula that defines
the 2'° functions MC®, and the discontinuities formed from
them, is described. The rule that identifies the 26 018
boundary values M° is given at the end of that section in
Eq. (2.25). In Sec. III a preliminary discussion of the
functions 7% and 7€ is given. This discussion is heuris-
tic, because it expresses each of the functions 7° and
T¢ as a formal infinite sum of bubble-diagram functions.
Three properties of these formal expressions are iden-
tified in Sec. IV as the defining properties of the func-
tions T¢ and 7¢, and a fundamental analytic property of
these functions is derived from their defining properties
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alone. In Sec. V the functions 7¢ and T¢ are expressed
in a well-defined way as sums that, like unitarity sums,
reduce to finite sums of bubble-diagram functions on
any finite region in p space. Then it is shown that T¢
=T%-C for the 26 018 sets G specified by Eq. (2.25).

In Sec. VI the functions M® = T¢ = T%-¢ are shown to
satisfy the six primary properties. The proof is divided
into two parts, First a proof is given in a slightly en-
larged theoretical framework in which it is assumed that
the physical scattering functions, and hence the functions
ME€, can be extended infinitesimally off the mass shell.
Then the analytic continuations that connect the function
ME® on different sides of the Landau surfaces can pass
through slightly off- mass-shell regions. In this off-mass-
shell framework the rule for continuing around any sin-
gularity surface can be expressed as a function of the
Landau diagram D that corresponds to the surface, with-
out specifying the particular point p on the surface near
which the continuation takes place. In the second part of
the proof the mass-shell constraints are rigorously
maintained. In this mass-shell framework the continua-
tion depends both on the diagram D and on the point p
near which the continuation takes place.

The mass-shell continuation is blocked, however, by
singularities lying on a certain well-defined set of ex-
ceptional Landau surfaces. The existence of these ex-
ceptional Landau surfaces causes no special difficulties
in S-matrix theory or Regge theory. The point is sim-
ply that complex cuts emerge from the unphysical sides
of the normal threshold cuts. Such cuts have been found
in numerous other studies. The important conclusion to
be drawn here is that the simple functions M¢ relevant
to Regge theory are not defined by simple on-mass-
shell continuations.

Il. NOTATION AND RESULTS

A channel g is defined by a separation of the complete
set of incoming and outgoing particles of a reaction into
two complementary disjoint subsets J, and 7g, each of
which has at least two particles. For a 3—~3 process
there are twenty-five channels. These are the direct or
total-energy channel £, the three initial subenergy chan-
nels ¢, the three final subenergy channels 7, the nine
cross-energy channels (if), and nine other cross-energy
channels, which will remain unnamed. These channels
are defined in Fig. 2.1, For definiteness the sets J, and
J, are defined so that J, contains at least two final
particles.

Throughout this paper the index ¢ stands for 1, 2, or
3. A line i is a line corresponding to one of the three
initial particles; the channel { is the corresponding ini-
tial subenergy channel specified in Fig. 2.1b. The index
falways stands for 4, 5, or 6, and is used to label final
lines, and also the corresponding final subenergy chan-
nels, as indicated in Fig. 2.1c.

t i f
3 6 f i
(a) (b} {c) (d) (e)

FIG. 2.1, Definition of the channels.
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Stability conditions preclude the existence of normal
threshold singularities in the nine channels of type (e)
of Fig. 2.1, and these channels will henceforth be ig-
nored. Thus the complete set E of channel labels g is
the set of sixteen elements

EE{t: 1, ) 6’ (14): cry, (36)}-

An arbitrary line will generally be represented by the
letter j. The channel invariant s, is the square of the
sum of the momentum—energy vectors k; of either one
of the two sets J, or J,:

SgE( 2 €ij)2:( 2 €ij)2-
i€ Jdg j€Jg

The symbol ¢; is a sign that is plus or minus according
to whether j is an f or an 7. The real physical momen-
tum—energy of particle j is denoted by p;.

The set E has 2'° different subsets G. For each of
these G there is a function M®, In this section a formula
is given that expresses each of these 2! functions M®,
and every single, double, and higher-order multiple
discontinuity formed from these M%, in terms of phy-
sical scattering functions for other processes, Certain
properties of these functions M® are derived in later
sections.

The function M® = M®(p) is a tunction of the set of six
real on-mass-shell energy—momentum conserving 4-
vectors p=(py, - -+, pg). It is convenient to call these
functions M° by the names that would be appropriate if
the sixteen channel invariants s, were independent vari-
ables. Thus MC is called the function evaluated below
all the cuts g in G and above all the cuts g in the com-
plement G=E - G of G. Similarly, the difference

M, =M= MF (2.1)

is called the discontinuity across the cut g. And for any
h in G the difference

M,C = MC - MC* (2.2)

is called the discontinuity across the cut / evaluated be-
low all the cuts ¢ in G and above all the cuts g not in
Gii=GU h. The cut ¢ means the cut lying in Ims, =0.

There are, in addition to single discontinuities, also
double discontinuities, and higher-order multiple dis-
continuities. The double discontinuity across a pair of
different cuts /z and % is the discontinuity across the cut
h of the discontinuity across the cut k:

I‘th = (hf - I,Wk) - (1"4}’ - A,fhh)

=M — M — M+ M™, (2.3)
Similarly, the multiple discontinuity across the set of
cuts H={(ly, hy, -+, h1,,), with the 4; all different, is the
discontinuity across k, of the discontinuity across hz-+-
of the discontinuity across #,. It is equal to

My= 25 (= 1)n¥
HYCH

(2. 4a)

where M, =M® =M and the sum runs over all different
subsets H' of H, including the empty set ¢, and n(H') is
the number of elements of #'. Similarly, for G H=¢,
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MyC= 25 (= )rEopeH

H*CH

(2. 4b)

is the multiple discontinuity across the set of cuts H
evaluated below all the cuts g in G and above all the cuts
gnotin GH=GUH,

Note that the multiple discontinuity M,¢ is indepen-
dent of the order of the elements in H. It is also inde-
pendent of the order of the elements of G. These sets
are regarded as unordered sets.

The formulas (2.4a) and (2.4b) can be inverted to give

MC= 727 (-1)"C"M,, (2.5a)
GG
and, for GI"H=¢,
MgC= 2, (= 1)"SDM... (2.5b)
GG

Equation (2. 5a) is just a special case of (2.5b). These
formulas, which are derived in Appendix B, express

all 2'% functions M, and also all the single, double, and
higher-order multiple discontinuities formed from them,
evaluated on all possible sides of all the remaining cuts,
in terms of the various multiple discontinuities My,

Qur general discontinuity formula is Eq. (2.5), to-
gether with explicit formulas for all of the functions
My occurring on its right-hand side. Most of these func-
tions My vanish by virtue of the generalized Steinmann
relations.

The generalized Steinmann relations assert that the
discontinuity M,¢ across any cut s is independent of
whether it is evaluated above or below any “crossed cut”
g. Two cuts g and % are said to be crossed if and only
if the corresponding channels overlap: i.e., if and only
if each of the four sets J,(1Jy, J,MJy, Je(1Jd,, and J,01J,
is nonempty. This requirement is equivalent to the con-
dition that none of the four sets J,, J,, J,, J, be a sub-

set of any of the others.

Two different cuts he E and k¢ E are crossed if and
only if one of the following five conditions holds:

(a) both are initial subenergy cuts ¢,
(b) both are final subenergy cuts f,

(c) both are cross-energy cuts (if), (2.6)

(d) one is a cross-energy cut ({/), and one is the
total energy cut /,

(e) one is a cross energy cut (i) and the other is a
subenergy cut that is neither 7 nor f.

It is convenient to speak of g as either a label, a
channel, or a cut. Hence a set of ¢’s can be called a set
of labels, a set of channels, or a set of cuts.

A necessary and sufficient condition for the general-
ized Steinmann relation to hold is that

My, =0 if H contains any pair of crossed cuts. (2.7)

It is immediately evident from (2. 5) that this condi-
tion is sufficient: (2.7) and (2. 5b) ensure that M, is in-
dependent of the presence in G of any cut ¢ such that g
and 1 are crossed. Conversely, if the M® satisfy the
generalized Steinmann relations, then (2.7) follows
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from (2.4a). For if g and % are two crossed cuts in H
then for every term (- 1)"™#"M7" in (2.4a) such that
neither g nor & is in H' there are three other terms
with H' replaced by gH’, hH’, and ghH', respectively,
and the sum of these four terms will vanish, by virtue
of the independence of M,® upon whether g is in G.

The conditions (2. 6) entail that every set H of more
than three cuts contains a pair of crossed cuts. In fact,
the generalized Steinmann relations are equivalent to
the following set of conditions:

My =0 for n(H)>3, (2. 8a)
My =M;;,=0, (2. 8b)
Mypo= M0y =0, (2. 8¢)
Mgy irsy = Mgy sy = Mg e
=Mg caenn=Mus rnn= Mg epen=0,  (2.8d)
Mgy =Mupm=0, (2. 8e)
and
Mivipy =Migy o =Miripn=Mip p0n =0, (2. 81)

where i and i’ are different elements of the set {1, 2, 3},
fand f are different elements of the set{4, 5, 6}, & is
an arbitrary element of E, and Hh=HU h,

The conditions (2. 8) reduce the number of nonzero
My to 68. Moreover, all these are obtained from twelve
basic forms by inserting particular integers for ¢ and
J. 1t is therefore feasible to exhibit explicitly all the
nonzero M.

Because topological connections are of central im-
portance it is convenient to represent My in a diagram-
matic notation.? The S matrix is represented by a plus
box:

S= + [0 .

(2. 9a)

The inverse of the S matrix (or S") is represented by a
minus box:

St=8"= mnEmu . (2. 9b)
Thus unitarity says that

IIIIlIIIIllI.lIIII = lIIlIIIIIIII (2. QC)
and

= mf1m (2. 94)

where the I-box represents the identity operator. The
shaded strips represent arbitrary sets of lines, and
there is an implied unitarity-type sum over all (mass-
shell) values of all possible sets of intermediate-par-
ticle variables. ®

The connected part of S is represented by a plus

bubble:
mm i = ﬂlm@m
c
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(2. 9e)

1293

and the connected part of §'=5"1 is represented by
minus the minus bubble:

[The notation differs from that of Ref. 7 by the extra
minus sign in Eq. (2. 9f), which is introduced to make
the minus bubble represent the continuation of the scat-
tering function to below all the cuts. Also, in the present
work the diagram are to be read from left to right, with
initial lines coming first. Sums of diagrams represent
the corresponding sums of functions. |

(2. 9f)

The cluster decomposition of the S matrix reads, in
various special cases that are needed below,

(D - AT - {1k

(2. 91)
A - oo Po{Te E
- 9j

where + is plus or minus throughout each equation. Two
frequently used identities are

(2.9¢0)

+

= (o (2. 9K)
and
= Jm@: _ (2. 91)

They follow immediately from unitarity and (2. 9g) and
(2.9h), respectively, together with the property of the
I-box, ?

where the X box represents any combination of boxes
and bubbles. Another frequently used symbol is defined

by
=+ m@m + , (2. 9n)

This equation combined with (2. 9g) and (2. 9h) gives

(2.9m)

IllIII = (2. 90)
and
- ik .o

These two equations will be used later.

The function M, =M® =M is the connected part of the
physical scattering amplitude:
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_ 4
MR O=r (2.10)
The sixteen single discontinuities M, are
G — [0
(2.11a)
S O=
f
Mf =
(2.11b)
=Q)"e
f
i
and
=0 N O=3 (2.11d)

It is convenient to introduce special symbols to re-
present the sum of terms of S (or of S') that have special
connectedness properties. The symbol defined by

i@m = i T
(2.12a)

can be shown'® to represent the sum of the terms of §
{or S") in which the initial line 7 is connected to some
nontrivial bubble (a trivial bubble is a bubble that is
connected to only two lines. It is usually represented by
a dot); i.e., it represents the sum of terms in which
the line 7 does not go straight through. Similarly, the
symbol

(2.12b)

represents the sum of terms of S (or S") in which the
final line f does not go straight through. Finally, the
symbol

a=t - v
i —¥ - 11—
t(_——f (2.12¢)
JRany
- I (oo
—f (2.12d)

= IIHIII)t -

represents the sum of terms of S (or S') in which neither
7 nor f go straight through. Two frequently used identi-
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ties, which follow from (2. 12a,b) and (2. 9¢, d, m), are

i Fm +m = - ™t @1z
and
Im i m I ‘IIIII\ Illl - m iChf
JI (2.12f)

In terms of these symbols the nonvanishing M,, are
given by

g SO T
- 2D G
S e s O=

(2.13a)

(2.13p)

(2.13¢)

f
=~ = -

(2.13d)

f
M )¢ - : ""“:"“”ﬂllllll:lﬂllo
® '
T

The nonvanishing functions Mg, are

(2.13e)

+y1i —
Mitf = 3 D+ =

(2.14a)

and

Migif)e =

f
8 e"‘"ﬂuulm
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_i Q“’“’mmmﬂmo
- cmlmmnnmle )

The first form given for each of these functions My,
although longer than the succeeding ones, exhibits a
systematic rule: There is a minus box for each # in H,
and these minus boxes occur between the parts of plus
boxes that contain nontrivial bubbles on which the appro-
priate external lines terminate.

To show how these formulas work we calculate M{i,),
which is the discontinuity across the cut (if) evaluated
below the cut f, but above all the other cuts. Using in
order equations (2.5), (2.11¢), (2.12a), (2.13¢),
(2.12a), (2.9m), and (2. 91), one obtains

F
M 5y = Mgy = Mgy

-

(2.15a)

In a similar way one obtains

) f
)

These formulas (2. 15) yield the inclusive optical the-
orem for the three-to-three case.

(2. 15b)

The formula (2. 5a) expresses the 2'® functions M€ as
the function M, = M® =M, which is the function evaluat-
ed above all the cuts, plus the sum of discontinuities
that shift the point of evaluation, to below the set of cuts
G. There is an equivalent formula that expresses M as
the function M= - M", which is the function evaluated be-
low all the cuts, plus the sum of discontinuities that
moves the point of evaluation to above the complemen-
tary set of cuts G=E -G,

To exhibit these other formulas we introduce for any
function F formed from boxes and bubbles the notation
F=— F, (2. 16a)
where dagger represents Hermitian conjugate. In par-

ticular, for any function F represented by a single dia-
gram one has
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F=c (- 1) F(+—=), (2.16b)

where N, is the number of explicitly appearing bubbles
in the diagram, and F(+--) is the function represent-
ed by the diagram obtained from the one representing
F by reversing the sign inside each bubble, box, and
modified box [such as occurs in (2. 12) and (2. 9n)].

The functions M® all satisfy the important property
[see (5.58)]

M =M°. (2.17)
But application of F~F and G -G to (2.53) gives
MO=MC = 5 (- 1)"C"M,.. (2.18a)

G1Cl
Since the sums in (2. 5a) and (2.18a) are over comple-
mentary sets, one of these formulas for M® may have
fewer terms than the other.

Similarly, the application of F~F and G~ G to (2. 5b)
gives, for GNH=¢,

M= 5 (- 1)) M,... (2.18b)
G
These functions 1\71,,5 satisfy [see (2.4b)]
= 5 (1 i
HICH
— 2 (_ l)n(H-H”)MG-‘(H-H')
H*CH
=(=1)™ > (- l)n(H")M(E-H)H"
HCH
= (= 1) pG-H, (2.19
or, equivalently, for GV H=¢
M,C = (= ), OF (2. 20)

The function M,® (for HN G=¢) is the multiple dis-
continuity across the set of cuts H evaluated above the
set of cuts g<= G and below the set of cuts g G- H. The
extra factor (= 1) in (2,19) and (2. 20) reflects the
fact that the multiple discontinuities A_,,U are calculated
by the rule “function below the cut minus function above
the cut.” The sets of cuts referred to in (2.19) are
shown in Fig, 2.2,

As an example of these alternative formulas note that
the discontinuity across the (if) cut evaluated below all
other cuts is given by (2.20), (2.16), and (2.11c) as

()
1

This same discontinuity is given by (2.5), (2.8), and
the definitions (2. 11¢), (2.13d), (2.13e), and (2. 14b),

M{B==M;;, = (2.21)

FIG. 2.2. The function M,C represents
the multiple discontinuity across the
set of cuts H (calculated by the rule
- below minus above) evaluated above
——ee the set of cuts G, and below the set

{ of cuts G-H,
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ahH_
Mun=Meagy = Mygpy = Mg+ Mg

f
- e .

(2,22)

Introducing the definitions (2.12), and the identity prop-
erty (2.9m) of the I-box, one obtains

Ry
i
f
. %
B ey -
f
e
:

f
- °“"‘=Hlllmu=uu T
i
f
*
i

which, by virtue of the unitarity equation (2. 9d) and the

an -
M(m =

(2.23)

identities (2. 9k, 1, m), becomes
f
M gz—ff; = e‘llllllllll'° (2.24)

1
which agrees with (2. 21).

These results, together with several other single dis-
continuities that can be derived in similar ways are
summarized in Fig. 2.3, Other valid formulas follow
from these by a reflection about a vertical axis together
with the substitution ¢ —f. Still others follow from the
uniform substitution + - for all signs o, and all signs
inside bubbles, boxes, and modified boxes. The + sign
standing outside the bubble on the left-hand side is not
to be changed: It signifies that the discontinuity on the
left-hand side is defined to be the function above the cut
minus the function below the cut. That is, it is the dif-
ference M(o,=+) = M(o,=-).

The formulas described above define the 2! functions
M®, and all the discontinuities formed from them, In
the following sections it will be shown that 26 018 of
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these functions have nice analyticity properties, and, in
particular, continue in a well-defined way around each
real p singularity surface. The 26 018 functions M® that
have this property can be identified in the following way:
For any set G let the set of signs 7, be defined by the
condition that 7, is plus if g lies in G and minus if g

lies in G. Then MC is one of the 26 018 boundary values
if and only if there is no pair (7, /) such that the follow-
ing conditions are all satisfied:

N, = =="1=- 7. (2.25)

Il HEURISTICS

The properties of the functions M® will be derived in
Sec. VIirom the properties of a similar set of functions
T®. These functions 7€ are heuristically defined in this
section as formal infinite sums of bubble diagram func-
tions. Three properties of the functions 7€ will be iden-
tified in Sec. IV as their defining properties, and finite
expressions for them will be obtained in Sec. V.

If one introduces the definition

R=S-1 (3. 1)
then unitarity takes the form
R=-R'-R'R,
Iteration gives, formally,
R=2,(-R")" (3.2)
n=1

This is an infinite series expansion for R in terms of
R',

*

ZF A F 2%

’ [@.é@@%ﬁ@g%}
=2 el {6

FIG. 2.3. The single discontinuity formulas.
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The connected part of (3.2) can be expressed in the

form!!
R,=S,=M=,F° =T. (3.3
Py

Here, as throughout this paper, the symbol B~ repre-
sents a bubble diagram every bubble b of which is a
(nontrivial) minus bubble. The sum in (3. 3) is over all
bubble diagrams B~ with the appropriate external lines,
and F?” is the bubble diagram function corresponding to
the bubble diagram B~. A typical bubble diagram B~ is

- ' /’-'=‘ *

B =
=) :
3 6

and the corresponding function F2~ is the product of the
four indicated functions #/=-S], integrated over the
physical values of the variables associated with the six
sets of intermediate lines. Further details can be found
in Ref. 11,

(3.4)

By definition a bubble diagram B is required to have
its bubbles partially ordered by the condition that every
line that connects two bubbles of B runs from the right-
hand side of one bubble to the left-hand side of another
bubble that stands completely to the right of the bubble
from which the line came. This means that all lines can
be drawn as directed lines that point from left to right,.
A diagram such as the one in Fig. 3.1 is not a bubble
diagram.

Consider an arbitrary channel g. It is defined by a
separation of the set (1, ---, 6) into two complementary
disjoint sets J, and J,. The set A~ of all B~ (with initial
lines 1, 2, 3 and final lines 4, 5, 6) can be separated into
two sets /3, and 3° by the following rule: B" belongs to
B, or Af according to whether B~ has or does not have
an explicit g-channel cut set.

Definitjon: An explicit g-channel cut sef of B is a set
of internal lines of B which if cut separates B into two
connected bubble diagrams B(J,) and B(J,), where B(J,)
contains all the external lines jcJ,, and B(J,) contains
all the external lines j< J,. Moreover, each line L; of
the cut set must be directed from B(J,) to B(J,).

Thus, for example, the diagram B~ of (3.4) belongs
to 3, for g=1,4, and #, and to A% for all other g in E.

This decomposition of A~ induces a corresponding

decomposition
T=T,+7T¢ (3.5a)

of the inifinite series expansion T of M given in (3. 3).
Here

T,= 7, FB 3.5b

¢ B:eJBg ( )
and

T* :B-Ze;ngB-° (3.5¢)

For each channel g one can make this decomposition
T=T, +T%. Moreover, for any sum F of bubble diagram
functions F° one can use (3.3) to give an expansion of
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F in terms of bubble diagram functions F®7, and then
use the same procedure to define a separation of F into
two parts,

F=F, +F¥%, (3.6)

where F, corresponds to a sum of B~ each of which has
an explicit g-channel cut set, and F* corresponds to a
sum of B~ none of which has an explicit g-channel cut
set. In particular, one can write

Tp="Ty +T,f (3.7

and

Th:Thg+Th&’. (30 8)

These definitions entail that T,, = T;,: Both symbols
represent the sum of F®” over those B" that have both
an explicit g-channel cut set and explicit 4-channel cut
set. In a similar way one can define Ty, Topnn, etc.,
all of which are independent of the order of their sub-
scripts. From this symmetry property it follows that
all of the various functions T,¢ with both upper and low-
er indices are independent of the order of their indices.
For example, (3.7) gives

T =Ty =Ty (8. 9a)
while (3.6) gives
T, =(T = T))p=Ty— Tens (3. 9b)

so that T\,*=T%,.

An expansion formally similar to (2. 5) follows direct-
ly from (3.6). For example,

T =(T-T)'=T"-T,

=T =Ty=T, + T, (3.10)
More generally, one finds
T = 2, (- )™, (3.11a)

HCG

_ The functions 7¢ and Ty defined by T¢ = - (7°)! and
T, == (Ty)" satisfy

TG: Z; (_ 1)H(H)TH°
HCG

(3.11p)

IV. ANALYTIC PROPERTIES OF TS AND T ¢
A, The structure theorem

The proofs of analytic properties will be based on a
theorem that specifies the analytic properties of an ar-
bitrary bubble-diagram function F°, This theorem has
been described in detail in Ref. 12. A resumé of its
main content is given here.

The main assumption of the theorem is a set of phy-
sical-region analyticity properties called the normal
analytic structure. This analytic structure is equivalent
to the S-matrix macrocausality condition.'® It is also a

FIG. 3.1. A diagram that is
not a bubble diagram,.
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formal property of the perturbation theory expression
for any scattering function. Roughly it is the property
that the singularities of the physical scattering function
are confined to positive- o Landau surfaces, and that in
some real neighborhood of almost any point p on any
one of these surfaces the physical scattering function
is the limit of an analytic function from directions lying
in a certain cone. The rules specifying these directions
are called the plus i€ rules.

The Landau surfaces are surfaces associated with
diagrams called Landau diagrams, A Landau diagram
is a topological diagram consisting of a set of directed
line segments L; and a set of point vertices V,. The
topological structure of the diagram is specified by a
set of structure coefficients ¢;, defined as follows:

s+ 1 if L; terminates at V,
€;,=4— 1 if L; originates at V, (4.1)
2 0 otherwise.

The lines of the diagram are classified as incoming,
outgoing, or internal according to the rule:

incoming if €; = 0 for all »
L; is{outgoing if €;, < 0 for all »
internal otherwise.

The incoming and outgoing lines are collectively called
external lines.

Each internal and external line L; of a Landau diagram
D is associated with a physical particle (of positive
mass ;> 0), and with a momentum—energy 4-vector
p;. Each internal line L; is associated also with a sca-
lar parameter o;. The Landau equations corresponding
to D are the mass-shell constraints

pif-mi=0 (allj), (4. 2a)
the conservation-law constraints
2ibi€, =0 (all %), (4. 2b)
i
the Landau loop equations
2y apmp =0 (allle L), (4.2¢)
jcInt
and the nontriviality condition
2. af-1=0. (4. 2d)
icInt

The set Int is the set of indices that label the internal
lines of D, L is the set of indices that label the closed
loops that can be constructed on the internal lines of
D, and 7;, is the number of times loop I/ passes along
line L; in the positive direction minus the number of
times loop ! passes along line L; in the negative direc-
tion. (It is sufficient to consider a set of linearly inde-
pendent loops; then the 77;; can be restricted to +1, and
zero.)

Let p represent the set of momentum—energy vectors
p; corresponding to the extevnal lines of D. Then the
complex Landau surface L(D) is the set of complex
points p such that for some choice of the complex p; and
a; associated with the internal lines L; of D the Landau
equations corresponding to D can all be satisfied.
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To describe the real Landau surface corresponding
to D let a sign o; be introduced for each internal line
L; of D. The set of signs o; is denoted by ¢. Then the
real Landau surface L(D°) is the set of points p that
satisfy the above Landau equations and also the
conditions

Imp, =0, allj, (4.2¢)

Ima; =0, allje Int, (4. 2f)

pt>0, o allj, (4. 2¢g)
and

o;a; >0, alljeint, (4. 2h)

Equations (4. 2a) through (4. 2h) are called the Landau
equations corresponding to D°.

The sign 0; is allowed to be +, in which case the cor-
responding equation (4. 2h) is eliminated from the equa-
tions that define L(D").

The symbol D represents a D’ with all o;=+. The
corresponding Landau surface L(D’) is called a positive-
o Landau surface. The union of all L(D") is called L*.

The Landau equations corresponding to D* have a sim-
ple physical interpretation.'*!® The significance of the
mass-shell and conservation-law constraints is obvious.
The significance of the Landau loop equations is this:
they ensure that the “displacement” vectors

A, =a;p; (4.3)

fit together to form a geometric diagram in a four-
dimensional space. This geometric diagram has the
topological structure specified by D*, and it can be in-
terpreted as a space—time diagram representing a
possible classical multiple-scattering process in which
point particles scatter at point vertices. The conditions
(4. 2¢) through (4. 2h) ensure that positive energy is
carried forward in time on each leg of this multiple-
scattering process. The parameter a; is the proper
time associated with L;, divided by the mass »;. This
geometrical interpretation of the solutions of the posi-
tive- @ Landau equations makes it clear that L{D") can
be nonempty only if the vertices of D* can be partially
ordered by the condition that each internal line L; of
D" point from left to right.

These space—~time diagrams are called space—time
representations of D°. For every solution of the Landau
equations corresponding to D there is an associated
space—time representation of D°., The vectors from an
arbitrary origin to the vertices V, of the space—time
representation are denoted by w,. The line L; is repre-
sented by the four-vector

Ai:Z€irwr' (4~4)
r
One of the conclusions of the structure theorem is an
i€ rule of continuation for bubble diagram functions.
This rule is a simple generalization of the plus i€ rule,
and it is most easily described by first describing the
plus 7€ rule itself.

Let w=(wy, *- -, w,) represent the set of w, corre-
sponding to a space—time representation of some D°.
Let D* be some positive- o diagram, and let p be some
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point on L(D*). Let (D", p) be the union of all w that
correspond to space—time representations of D* having
external lines specified by the set of (external) vari-
ables p. Let 2*(p) be the union of the sets (D, p) over
all positive-a diagrams.

The plus i€ rules can be stated in terms of a cone
C*(p) that is closely related to *(p). Let ¢=(qy, ¢z * -,
q¢) represent the imaginary part of the complexification

of p =(p1, Pz =+, pe). Then

C*(p)z{q:— 2 €4q; w,>0 for allweﬂ*(p)}o (4, 5a)
JEExt
r< Ver

Here Ext is the set of indices j that label the compo-
nents p; of p=(py, - -+, pe), and Ver is the set of indices
7 of the components w, of w. By virtue of the Landau
equations the cone C*(p) can be written in the alterna-
tive form!®

C*{p) :{q : 20 q;-85(w)>0 forallwe Q*(p)} , (4. 5v)
i Int
where 4;(w) is defined by (4.4), Int'is the set of indices
labelling internal lines of the diagram specified by w,
and the g; for j < Int are any set of 4-vectors that satisfy
for every ¥ the momentum—energy conservation law
constraints j,q;€; =0, where the external ¢; are fixed
by q.

The plus i€ rule says this: Let p be any point of /}i ,
which is the real mass shell restricted by momentum—
energy conservation. Let C(p) be any cone that is closed
apart from its missing apex ¢=0, and that is contained
in C*(p’) for all points p’ in some real neighborhood of
p. Let/hi, be the complex mass shell, restricted by
momentum—energy conservation, and suppose the inter-
section of /i , with {g € C(p)} has p on its boundary. Then
P has a real neighborhood &/ (p) C R*" such that the phy-
sical scattering function in A/(p) "/} is the boundary val-

ue (in a distribution sense) of a function that is analytic®®

in the set
Metiip’ NP g e C)}ri{g e N}

where NC R*" is some neighborhood of g=0. (R*" is the
real 4n-dimensional space, and » is the number of par-
ticles, which is six in the case under consideration.)
This statement of the 7¢ rule will be used presently.

The first main conclusion of the structure theorem!”’
is this*:

(1) Let B be any bubble diagram, and let FZ(p) be the
corresponding bubble diagram function. Then F?(p) is
analytic at all real (mass-shell) points p not lying on

L(B)= U L(D°),

poCpB
where D° is contained in B (i.e., D°C B) if and only if
D can be constructed by replacing each plus bubble b

(4.6)

*The contraction condition occurring in the statement of the
theorem given in Ref. 17 is here replaced by the rule that
condition @.2h) is relaxed for lines L; that are explicit lines
of B itself. This new version is slightly stronger than the
original version, but follows from essentially the same
argument,
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of B by either a point vertex V, or a connected positive-
o Landau diagram D; such that L(D;) # ¢, and by re-
placing each minus bubble b of B by either a point ver-
tex V, or a connected negative~-a Landau diagram D;
such that L(D;) #¢. The initial and final lines of b are
to match the incoming and outgoing lines of D,. Thus
each line L; of D°C B is either an internal line of a Dj
or Dj, in which case it carries the sign ¢; =+ or 0;=~,
respectively, or it is a line L; of the original bubble
diagram B. In this latter case this line is assigned the
sign o; =+, which means that the corresponding param-
eter a; can be positive, negative, or zero. These lines
of B itself are sometimes called explicif lines.

An example of a D°C B is given by

(4.7a)

and

DO‘

(4. 7b)

The internal lines of each D, and D; are drawn so as to
lie inside the corresponding bubble b.

The set Q(D°, p) is defined, in analogy to Q(D*,p), as
the set of all w that correspond to space—time repre-
sentations of D° that correspond to solutions at p of the
Landau equations corresponding to D°. And Q2(p) is de-
fined in analogy to Q*(p) as

p)= U QD% p).

DYCB

(4.8)

Finally, C®(p) is defined, in analogy to C*(p), as

CB(I))E{L]:— 2 €,q; w, >0 forall w in QB(p)} (4. 9a)

JCExt
rc Ver

:{ q: 2 q;+8;(w)>0 for all w in QB(p)}, (4. 9v)

iciInt

The second main consequence of the structure theorem
is this:

{a) The functions F®(p) satisfy an i€ rule that is the
same as the plus i¢ rule described above, except that
C?(p) replaces C*(p).

If CB(p) is empty then the i€ rule is devoid of content:
No assertion about analyticity properties of F® at p is
made.

An important case where CB(p) is empty is the case
in which p lies on L(D*(B)), where D*(B) is the positive-~
«a diagram obtained by contracting all the bubbles of B
to point vertices. For example, if
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{4.10a)}
then

(4.10b)

To see that C5(p) is empty in this case note that if p
lies on L(D*(B)), then it also lies on L(D"(B)), because
the Landau equations are invariant under the transforma-
tion o; ~- «;, g; ~=0;. But the change a;~- o; re-
verses all vectors A;, jeInt. But then the C5(p) defined
in (4. 9b) is empty, since both D*(B)C B and D*(B) C B.
Thus no analyticity properties are asserted for F® at
p on L(D*(B)).

It is in fact well known!'® that F? is identically zero
on one side of the surface L(D*(B)), but not (in general)
on the other.

The example just given illustrates a simple way in
which the analytic continuation of a sum F of bubble dia-
gram functions can be blocked: For some Landau dia-
gram D° the function F has a Landau singularity surface
corresponding to both D’ and D°, where D is D° with
all the signs o0; reversed. The i€ rules associated with
D™ are opposite to those associated with D°, and hence
the structure theorem provides no way to continue the
sum F past the surface L(D°) = L(D™).

This situation in which a function can have singularity
surfaces associated with both a diagram D° and also the
associated diagram D™ is the canonical situation in
which continuation is blocked. However, for a full proof
that continuation is never blocked one must also rule
out the possibility that surfaces corresponding to topo-
logically different diagrams conspire to block the con-
tinuation. This will be done in Sec. VI,

The proofs of Sec. VI depend on certain analyticity
properties of the functions 7¢ and T°. These properties
are derived in subsection D by combining the results de-
scribed in this subsection with the properties of the
functions 7¢ and T° described in the next subsection.

B. Properties of the 7 and 76

In this subsection three properties of the functions
TC¢ are described. These properties are satisfied by the
formal expressions for these functions given in Sec. IIJ,
and can be considered to be the defining properties of
these functions as will be discussed in the next subsec-
tion. The analytic properties of the functions T and
T° that are derived in Sec. IV.D follow from these prop-
erties alone, and hence apply, in particular, to the
well-defined expressions for these functions given in
Sec. V.

The three properties of the T¢ are now described.

Property 1: Each T° can be written in the form

T¢= 2, (- 1)1, (4.11a)

HCG
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where the T, are a set of 2'° functions that can be writ-
ten in the form

Ty= 2, FB (4.11v)
Beg
H
where every B in A, has an explicit #-channel cut set
for every h in H. [These cut sets are defined above
{(3.5). ] Property 1 follows, for the infinite series ex-
pressions, from (3.11a).

Property 2: Each T° can be converted solely by
means of the unitarity and cluster decomposition prop-
erties of S from the form given in (4. 11) to the form

» B

7% = FB, (4.12)

_BEBG

where no D°CA¢ has a positive- @ g-channel cut set for
any g in G. Here the following definitions are used:

Definition: A positive-a g-channel cut set of D° is a
set of internal lines of I° such that D° is separated by
the cutting precisely once of every line of this set into
two connected diagrams D°(J,) and D°(J,) such that
D°(J,) contains all the external lines j e J, and D°(J,)
contains all the external lines je jg Moreover, each

line L; of the cut set must be directed from D°(J,) to
D°(J,) and have a sign o, =+ or +.

Definition: A D°CJ is a D° such that for some B the
conditions D°C Be /3 hold.

Remark: For any collection A of diagrams B~ having
only minus bubbles the statement no D°C /3 has a posi-
tive- @ g-channel cut set is equivalent to the statement
no D°C /5 has an explicit g-channel cut set. This is be-
cause only explicit lines of B~ can belong to a positive-
« g-channel cut set. Thus Property 2 follows from the
meaning given in (3.5) and (3. 6) of superscripts.

Propevty 3:
T,=T*=T=M. (4.13)

Remavk: In equations such as (4.11a) and (4.12) in-
volving sums of functions F® over sets Bc /5 it is to be
understood that the diagrams B of A can eventually have
signs or other numerical coefficients, and that the func-
tions F? inherit these coefficients.

The functions 7€ and T are defined, in accordance
with (2.16), by

TG —_ (TG)Y

(4. 14a)

and

Ty=~—(Ty"

= 2, F?

BEcfu

(4.14b)

where A¢ and 5 are obtained from A¢ and 5, by the
mapping
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D= — - O
D= — - =Om
s — =k

followed by an overall sign change. The last two map-
pings in (4. 14c) apply also to the special boxes defined
by (2.9n), (2.12a), (2.12b), and (2.12c).

Negative- a g-channel cut sets are defined in the same
way as positive- o g-channel cut sets [see (4.12)] ex-
cept that “positive-a” is replaced by “negative-a, ” and
o;=+ or = is replaced by o;=-or +. It is thus clear
that no D°C A% has a negative- @ g-channel cut set for
any g in G.

C. Uniqueness of the 76

In Sec. V a set of 2!" well-defined functions T¢ and
Ty satisfying properties (1), (2), and (3) is constructed.
The question of uniqueness arises: Can there be two
different sets of 2'7 functions T° and T satisfying these
three properties?

In this section it is shown that the functions 7¢ and
Ty are unique in the following sense: Let T° and Ty be
members of any set of 2'7 functions that satisfy prop-
erties (1), (2), and (3). Let 7.¢ and T7 be the infinite
series expressions obtained by introducing for each plus
bubble of the expressions (4.12) and (4.11b) for 7¢ and
Ty, respectively, the expansion (3. 3), and then com-
bining together the different terms that are multiples
~ of each of the distinct possible minus-bubble diagram
functions F2~, Then T_.° and Ty are precisely the infinite
sums that were represented in Sec. III by the symbols
T®, Ty. This result justifies the use of the same sym-
bols T¢ and Ty to represent, on the one hand, the infi-
nite series expressions defined in Sec. III, and, on the
other hand, the finite expressions that are obtained in
Sec. V.

For a complete proof of uniqueness one should, strict
ly speaking, show that two different well-defined ex-
pressions in terms of bubble-diagram functions that
have the same expression in terms of minus bubble dia-
gram functions are in fact equal. This can probably be
done. However, it is not necessary for our purposes.
All that we need is some set of well-defined functions
that satisfy the properties (1), (2), and (3), and these
functions will be taken to be the functions defined in
Sec. V. We doubt that others exist, but the unigqueness
of the M® is based in any case on the generalized
Steinmann relations.

Because uniqueness is not really essential to our
argument the proof of it will be simply sketched, rather
than presented in full detail.

If the infinite series expansion (3. 3) obtained from
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unitarity and the cluster decomposition is introduced
back into the unitarity equation one finds that it is iden~
tically satisfied; i.e., if (3.3) is introduced into SS" -7
=0, then one obtains the result

2 F# =0

Bef35,

(4. 15)

where /3 3 is empty. This means that if any function

F= }, F°

B&F

(4.16a)

is converted by means of (3. 3) to an infinite series

F= 2, F5 (4. 16b)

B-cf-F
then A~F is invariant under a change in form of F gen-
erated by the application of unitarity; i.e., if F and F’
are equal by virtue of unitarity and the cluster decom-
position of S, then

BT=4F", (4. 16¢)

This is true because (4.15) implies that any identity
among bubble diagram functions that follows from uni-
tarity and cluster properties is identically satisfied
when all the components are expanded in terms of F2~
functions; i. e., unitarity acts as the identity in the
minus-bubble representation.

Let T° and T be members of a set of 2!7 functions
that satisfy (1), (2), and (3). The formula (4. 11a) for
T entails (see Appendix B) that the functions T,¢ de-
fined for GNH=¢ by

Ty¢= 20 (= D)™ Tye. (4.17a)
GICG
satisfy
TyC= )5 (= )rHHTeH? (4.170)
H*CH
and also
.= 2 T%K. (4.17¢)
Kt K"
KN JK*=K
K*N\K*=¢

where in (4. 17¢) the sum is over all nonintersecting
sets K’ and K” whose union is any fixed set K that does
not intersect GU H,

A special case of (4.17¢) is

°= 2 T,

K&

(4.18)

This gives T° as a sum over terms of the form Tg".
Equations (4.17a) and (4. 17b) give

T =2 (- 1)"C)Tg,, (4.19a)
G'CK
and
T = 2. _(-)n#EH KA (4. 19b)

The equality of the right-hand sides of (4.19a) and
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(4. 19p) follows from (4. 11a) alone: It is identically sat-
isfied if (4. 11a) is introduced into (4.19b). According to
Property (2) the equality of the expressions (4.11) and
(4.12) for T¢ follows just from unitarity and the cluster
decomposition of S. Thus, according to (4.16¢), Eq.
(4.11a) with 7% and T, replaced by T.¢ and T3, respec-
tively, is identically satisfied: Both sides have the same
minus-bubble representation. But then the replace-
ments of the T° and Ty on the right-hand sides of
(4.19b) and (4.19a) by 7.¢ and T}, respectively, must
yield the same answer: Both procedures must give the
same formal expression

TK = Z FB-:

(4.20)
B-EBK-K

where Bz is some well-defined set of B-,

Let 8¢ be the set of B~ obtained by the expansion of
the B€ /3¢ in terms of B’s. And let 8} be the set of B~
obtained from the series expansion of 3, in terms of
B™’s. The characteristic properties of A€ and By are
not destroyed by the series expansion. That is, no D°
C /¢ can contain a positive- & g-channel cut set for any
g in G, and every B< A5 contains an explicit s-channel
cut set for every % in H. Moreover, the condition that
no D°C 3¢ contains a positive- a g-channel cut set is
equivalent to the condition no Be 8- contains an expli-
cit g-channel cut set, since all lines L; of any B~ with
g;=+ or = are explicit lines of B*. Thus, by virtue of
(4.19), BF™® contains a B~ only if B~ has no explicit g-
channel cut set for any g in K, and has an explicit s-
channel cut set for every % in K. But then any given B~
can be contained in one and only of the sets 8™, name-
ly the one such that K is the set of all g such that B~ con-
tains an explicit g-channel cut set.

Each B~ must in fact be contained exactly once (with
coefficient plus one) in the union of all B, This fol-
lows from (3.3), (4.13), and (4. 18) for the special case
G=¢. Thus each Sz is, by virtue of (4,11)—(4.13),
exactly the set of all B™ such that B~ contains an explicit
g-channel cut set for every g in K, and contains no ex-
plicit g-channel cut set for any g in K. That is, each
B is uniquely defined by the conditions (4, 11)—(4.13).
Thus, by virtue of (4.18) and (4.20), every 7T.° is also
uniquely defined by the defining properties (1), (2), and
(3) of T°. The T are uniquely defined by (4.20) and

T,= 2, TIE, (4.21)
K'CH

D. Analytic properties of 7C and TG
For any g in G consider the Landau surface L(D;)

= L(D;) corresponding to the pair (D;, D;) of g-channel
normal-threshold diagrams. (See Fig. 4.1.) The dia-
gram D; has a positive- @ g-channel cut set. Hence
property (4.12) implies that no D; satisfies D;CA%. If
only normal threshold diagrams need to be considered,
then the generalized i€ rule stated below (4.9) says
that the function T¢ continues into itself around L(D;)
= L(D;) by the rule associated with the negative-a dia-
gram D;. This rule is the minus i€ rule, which pre-
scribes a detour into the lower-half s, plane.

This argument extends immediately to a large class

1302 J. Math. Phys., Vol. 16, No. 8, June 1975

of singularities: Property (4.12) excludes from 7€ all
singularities associated with diagrams D° that can be
contracted to any positive-« diagram D}, for any g in
G.

By a similar argument 7¢ can have no singularities
associated with diagrams that can be contracted to any
D; for any g in G, If T°=T"C, then this function has no
singularities associated with any diagram D" having a
positive- a g-channel cut set for any g in G, or having
a negative- @ g-channel cut set for any g in £- G,

This property is the basis of the proof in Sec. VI of
the analyticity properties of the 26 018 boundary values
M. Before giving that proof we shall, in the following
section, construct finite representations for the func-
tions T¢ and T°, and show that 7% = TE-¢ for the values
of G defined by (2, 25).

V. CONSTRUCTION OF THE 76

In this section a set of functions 7° is exhibited that
satisfies the three properties listed in Sec. IV. The
procedure is to make an ansatz for the functions 7',
and then to show that these three properties hold. The
ansatz is that

Ty=My (5. 1a)
in all cases except those given by the formulas
Tiirye = Tigine = Teinse = Tigans
=D;. (5. 1b)

The functions M, are defined by (2.7)—(2. 14), and the
functions D;; are defined by

R
%

A
°§I“‘='ll:::‘:‘f:\°
V

(5.1c)

+ +
(e Dfigy (d) D,

FIG. 4.1. All connected positive-@ Landau diagrams with 3
incoming lines, 3 outgoing lines, and 2 vertices are shown.
Line ¢ is any one of the initial lines 1, 2, 3, and line f is any
one of the final lines 4, 5, 6. The plus signs on the internal
lines indicate that the corresponding Landau a’s are positive.
The number of the internal lines = is an arbitrary positive inte-
ger. The 6 diagrams of (@) and (b), the 9 diagrams of (c), and
the diagram of (d) are called subenergy diagrams, cross-en-
ergy diagrams, and total-energy diagram, respectively. The
connnected negative-a g-channel diagram D, is obtained from
D; by simply changing all the plus signs o; to minus signs.
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Inspection of (5.1) and (2.11)—(2. 14) shows that
(4.11b) is satisfied. Thus if 7€ is defined by (4. 11a)
then property (1) is satisfied. Property (3), i.e., Eq.
(4.13), follows from (4.11) and (5.1). Thus it only re-
mains to prove Property (2), which is that the expres-
sion for 7° given in (4.11) can be converted solely by
means of unitarity and cluster properties to the form
(4.12).

The conditions imposed by (4. 12} can be compactly
stated with the aid of the following:

Definition: A function F is said to belong to A€ if and
only if F can be expressed, using only unitarity and
cluster properties, in the form

F= ), F®

(5.2)
BcSF

where no D°CAF has a positive- @ g-channel cut set for
any gin G,

In terms of this definition (4.12) is the requirement
that for every G the function T¢ belongs to R °.

This property (4.12) must be proved for each of the
218 possible sets G. The sixteen special cases in which
G consists of a single element G & E are covered by

Pyoposition 5.1: T¢=T - T, belongs to R*.

Proof: Case 1 g=1i. Unitarity (2. 9d), and the cluster
decomposition formulas (2. 9i), (2.9j), and {(2.9m) give

CE- ©Gr - 3 S50r

the left-hand side of (5.3) is T~ T;. The right-hand
side is the required expression for T, for it is clear
by inspection’ that every term in this expression be-
longs toR*.

(5.3

Case 2 g=f. The proof is essentially the same as for
Case 1: One merely uses the alternative form (2. 9¢) of
unitarity, in which the minus box appears on the right-
hand side instead of the left-hand side.

Case 3 g=(if). Equation (5. 9) of Ref. 9, specialized
to the present case, reads

f f o ¢
- CE - - S
R |
+ + © = , c
i “"H'mu i

where the function represented by the R, box appearing
on the right-hand side belongs, as explained below, to
R, The last three terms on the left-hand side of
(5.4a) are disconnected, by virtue of (2.90) and (2. 9p),
and hence cancel the disconnected terms on the right-
hand side. This gives the required result.
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The fact that the function represented by the R, box
in (5.4a) belongs to R ‘*” follows from results of Ref.
9. Comparison of Egs. (5.6), (5.8), and (5.9) of Ref.

9 shows that
T=E = JxE -
;52; -
i Z =AY

where D.P. is a sum of disconnected parts and H is a
sum of F® over a set 8 of B with the property that for
any D°CA the line i can be connected to line f by a di-
rected path from ¢ to f that consists of a sequence of L;
having the property that every one of these L; with o,
=+ or = points in the direction of this path from ¢ to f.
This directed path is indicated in the second line of
(5.4b). (The lines L; with g; =~ can be ignored.) The
existence of such a path ig implied by (5.7) of Ref. 9.
It ensures that no D°C/A has a positive-a (if)-channel
cut set.

i

]

(5. 4b)

Case 4. g=t: Let A, B, and C denote certain bubble-
diagram functions, and let 4 and C each be decomposed
into a sum of two bubble-diagram functions so that

A=A"+A" (5.5a)
and

c=c’'+c”, (5. 5b)
Then one finds, trivially, that

ABC=A'BC+ABC'~A'BC'+A"BC", (5.6)

Here the product form indicates the usual product of
bubble-diagram functions so that, for example, in ABC
the outgoing lines of the bubble diagram corresponding
to A are identical with the ingoing lines of the bubble
diagram corresponding to B,

Consider the special case of (5.6) where A and C
each represent the plus (minus} box and where B re-
presents the minus (plus) box. Unitarity [Egs. (2.9c,d)]
takes the form

AB=BC=1. (5.7
Substituting (5.7) into (5.6) one obtains
A=A'"+C’'-A'BC’'+A"BC". (5.8)

Suppose, specifically, that in (5.8) A and C represent
the plus box and that B represents the minus box. Also
let A’ and C’ each denote the circled plus box and let
A" and C” each denocte the plus bubble [so that Eqs.
(5.5a) and (5.5b) are a form of (2.9n). ] Then (5. 8) takes
the form

TNo D°C B can have a positive-a g-channel cut set if any

minus bubble of B touches external lines from both J, and J,.
And no D9CB can have a positive-o g~channel cut set if B

is not a connected diagram, This remark will be referred to
repeatedly in the arguments that follow by the use of the dag-
ger symbol.
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=C=-
- % o ] 7 |

Similarly, one finds

- C=

°mm=lmm°

- 7.

(5.9a)

’Illlllllllll‘
ﬁllllllllllllﬁ +

(5. 9b)
Equations (2. 9n), (2.9i), and (2. 9j) show that

s T es @) {E

{(5.10)

It is clear by inspection'r that the last three terms of
(5. 10) belong to R*. The first term can be written with

the aid of (2. 9k, 1) in the form
a 3
f
i e‘mlllﬁﬂﬂllllﬁe
y

(5.11)
where the vertical lines «, ¥, and 6 cut through the
sets of lines that are to be identified with the sets of
lines labelled by «, ¥, and 6 in (6.1) of Ref. 9, respec-
tively, and 8 is identified with the empty set.

Suppose that B is replaced by an equivalent B as is
explained in Corollary 6.1 of Ref. 9. Let D° be any
D° C B’ and suppose that D° has a positive- @ {-channel
cut set. Then the right end point of every line of ¥ must
lie in D°(J,). This is true because no line of a positive-
a cut set of D° can be an outgoing line of the right minus
bubble or an internal line of a negative- @ Landau dia-
gram D; corresponding to this minus bubble. Similarly,
line 6 is in D°(T,). Hence, all the conditions required
by the last sentence of Corollary 6.1 of Ref. 9 are met.
[To convert the notation of Ref. 9 to that of Case 4 of
the present paper use the correspondence: w=uw,
-{1,2,3}, w'=w)~{4,5,6}, connected X(C, w’) ~D°(J,),
connected X(C, w) ~ D°(J,), simple positive {w, w’) cut
set with X(C, »’) and X(C, w) connected ~ positive- «
t-channel cut set. | Thus, if that part of D° that corre-
sponds to Bj (B} is equivalent to B,) is denoted by D,°,
then all points of D;° — a lie in D°(J,). This means that
the part of D° that corresponds to the part of B’ lying to
the right of the set of lines @ must lie in D"(J,). But then
the remaining part of D° must be disconnected, and the
existence of a positive- o /-channel cut set is precluded.

Proposition 5.1 is a special case of
Pyoposition 5.2: The function

¢ = 25 (-1yhry

HCG

(5.12)

can be converted by means of the unitarity and cluster
decomposition properties of S to the form
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T¢= 3, F%, (5.13)
BcfC

where no D°C A% has a positive- o g-channel cut set for

any gin G.

That is, the 7¢ defined by (5.12), with the Ty defined
by (5.1), belongs toR°.

Proof: Several quantities that occur often in the proof
are defined as follows:

. 5. 140
A= i (5.14b)
Beo= (5. 14c)

f

f
+ xnnm + D.P.
i ) mm’

i § T :
Tin* Tan ¥ Tin * T+ 0P (5.14q)

where D. P, stands, in general, for any sum of discon-
nected parts. The first two quantities appearing in the
last line of (5. 14d) are defined by

i =
T(if) - T(if) - Ti(if)

=Mipy = Mgy
=M, = i%f (5. 14e)
where the calceulation in (2. 15b) is used, and
Tiipy =Toin = Tiins
=Migy = Meipys
(5. 14f)

= ]Wf

f

where the calculation in (2, 15a) is used. The second and
third quantities in the last line of (5. 14d) are defined by
(5.1), (2.11¢), (2.13a), and the definition

FP=_ (F)T

= (= 1)V FB (4 = =), (5. 14¢)

where N, is the number of (explicitly appearing) bubbles
in B and F?(+ — -) is the bubble-diagram function for
the bubble diagram B(+ -~ -) obtained from B by chang-
ing the sign inside each bubble, box, and modified box.

Each of the above equations can be converted to an-
other one by the application of bars to each term. For
example, from (5. 14d) one obtains

Ay =Tip + Tl + Tipy + Tip +D. P.. (5.14h)
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Using (5. 14), (4.13), (2.10), and (5.1a), one may
write (5.9a) and (5. 10) in the form

T=T,+A-2 A, -2, A,+2,A;+D.P.. (5.15a)
i 5 if
From (5. 9b) one obtains
T=T,+A-2LA; -2 A;+2A;;+D.P.. (5.15b)
i f i.f
For any G in E this equation can be written as
Ae DA - DA+ 20 Ay=F (5.16a)
i=G fceG icG,fEC
where
Fy=T-T,+ ) A+ LA, 2 Ayu— 2 Ay
icC fet S FE8,i
+ ), A,;+D.P.. (5.16b)
icG,ref

The unrestricted sums over i or f are sums over all
three values of 7 or f. As mentioned earlier, the index

i is always restricted in this paper to the values 1, 2,
and 3, and the index f is restricted to 4, 5, and 6. A
sum over { € G is a sum over those indices ;=g e G that
label initial subenergy channels, and the sum over i< G
is the sum over the remaining indices in the set (1, 2, 3).

From (5. 14b), the cluster expansion (2. 9j), and
(5.14e), one obtains

Ai:Zf;Tfm+Ti+D.P.o (5.17a)
Under the substitution F ~ F this equation becomes
E:_Zf;T{UﬁT‘ﬁD,pg, (5.17b)
where we have used (5. 14¢) and (5. 14f). Similarly,
Ay=) T}, + T +D.P. (5.18a)
and
A=-2iTiy +T,+D.P.. (5.18b)
Substituting the right-hand sides of {5.17a), (5.18a),

and (5. 14d) into the second, third, and fourth terms on
the left-hand side of (5.16a), respectively, one obtains

T~ ETi— Z;Tf_f_ 2 T;s- Z/ T:,'f)
i€6 fc6 iEG,fE6 i€6,feC
- 2 Thy+ 5 Tu,=F. (5.19)
icd,fee icc fee
The equation
=Tun=Tan=Tiin=Tunst Ticips (5. 20)

was proved in Sec. II [see (2.21) and (2. 22)]. This equa-
tion yields trivially

_ P - P
2 Tup= 20 ATap = Tign = Taps
i€6,fcC iCG G, (ifycC

.

Z’ T(ifn

+ Ty ¢l -
i€6,fE6,(iHEC

(5.21)
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where the condition (/) € G or {(if) € G under the summa-
tion sign means that there is a sum over the pairs @N,
and that this sum is to be restricted both by any other
appearing conditions on ¢ or f, and also by the condition
that (if) be an element of G of G, respectively. One also
finds trivially from (5. 14e) and (5. 14f) that

2, Ti. = [T s = Tigis ]
iCC,fcC (th ic6,fel,tiHhe6 ¢ L
+ 2 T, (5.22)
icC fEC(NCE
21 Thn= 2 [Teisy = Toingl
ietiee N ieeseciinee T8
+ 2 T s, (5.23)

ieB,fCG,(if)ET

Substituting (5.21), (5.22), and (5.23) into (5.19), one
obtains

T+F,=F, (5. 24)
where
Fo=e 0 Ti= L Te+ 2 Ty= 2 Ty
icG &G i€G fCce (ifycG
- .
+ 2 Tyint 2 Tapg
icG,(ifyeC FEG,(ifyeC
- > Ticinys (5.25a)
i€G,fc6,(iHed
and
. T =
F,=F ~ ) Teify = 24 Teis
ieC,feC,iHece 1CG,fEG(if)ET
Y 7 SN
+ 2y This + b T{i,- (5.25b)

iSCG,fEC,(iHaT icC,fEC(iHcT

At this point it is convenient to consider separately two
different cases

Case 1: ({ < G). Suppose G does not contain . Then
(5. 24) becomes

2 (=), =T% = Ry,
HCG

(5. 26)

Indeed, the terms appearing on the left-hand side of
(5.24) are identical to those appearing on the left-hand
side of {(5.26), by virtue of the fact that all the T, =M,
for HC G not explicitly listed in (2.10), (2.11), (2.13),
or (2.14) vanish. Thus the proof for Case 1 can be com-
pleted by showing that F, belongs to R°.

The cluster property (2. 9j) and unitarity give

aj - DA + -.
f

= + D.P. (5.27
Similarly,
38 TOREECF, + o (.29

After substituting the right-hand sides of (5.27) and
(5.28) into (5. 16b), one sees’ that
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2 Ay

Fl -
icG,rct

(5.29)

belongs to R°.

After replacing the plus bubbles in 77 (is, and in T (i
by the left-hand sides of (2. 9k) and (2. 91) one sees' that
the last three terms on the right-hand side of (5. 25b)
belong to R¢. Hence, F, belongs toR° if

2s Ay— 2 Tipy = 2 A;
icC,fet i€l ,fF,if e6 iceG,fel,(inect
+ 2 (Agr— T(if)) (5. 30)

icC fEC,(iHEC

belongs to R, One sees' from (5.14d) that this is true
for the first term on the right-hand side of (5. 30).

From (5. 6) of Ref. 9 one obtains
f

A - T(if) = el"“lm‘e +
f
) '.
f

The H-box is the expression given in (5.7) of Ref. 9.

It is a sum over a set 3 of bubble diagrams B such that
any D°C Be /3 contains a path / from i to f that consists
of lines L; with the following property: Each line L;
with sign ¢; =+ or + points in the direction of P, i.e.,
from ¢ to f. This property is indicated by the internal
line in the box appearing in the last line of (5.31). This
line precludes the existence of a positive- « (if)-channel
cut set in the A;;— T(;;,. Thus one sees' from (5. 31)
that the second term on the right-hand side of (5. 30)
belongs to R¢. This completes the proof for Case 1.

(5.31)

Case 2: (t < G). Suppose G contains /. The equation

Z/ Ty + itf

,f

-T= (5.32)

is now needed.

Proof of (5.32): Equations (5. 15a) and (5. 15b) give
—T =T, - A - 2A+ 5 A=A~ LA
i f i i f

+2,A;+D. P, (5.33)

i,f

Using (5.1), (2.13Db), (5.14),

and (2.11a), one obtains
-T = 3@5@ - F@G}
OCHGE - 3 O
- ,:Q)‘E{EE T

=3 A;-A,-T,+D.P.
f

(2.12a), (2.9j), (2.9%k),

*M

(5.34)

Similarly,
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- Tp=2A1-A;~T;+D.P, (5.35)

By virtue of (2.9¢), (5.6), (2.12a), (2.12b),

and (2.91) one has

(2. 9k),

¢ f
O - O

= : e""'""-"'"ume + °:Illl|mm=""”"||°
_ e‘lllumam‘“"m f + °""'ﬂ'“"‘-’""Eumg
f f
- 0""'ume +
- i +, °’"“'mmm-muEl,,mg

so that,

(5. 36)

by (5.14), (5.1),
Tip==Tiy ~Thy +Ay-Ay+D. P,

Combining (5.33), (5.34), (5.35), (5.37),
(5.17a) and (5.18a) one obtams (5>32 .

By virtue of (5.34), (5.35),
(5. 32) in the form

and (2, 14a),
(5.37)

and using

and (5. 37) one may write

"Tt:'—F4+ Z Z/A—Z/T+ .:‘IAif
icel,f icl icC i,feC
- A~ DT
FcC feC
+H 2+ 5 - Z})( T +A ,~A,,)
(iec’f,f i,f—é(T e (:f) (if) if if
+D. P. (5.38)
where
Fy==T,+ 2 Tyu+ 0 Thu— 25 Tiyy (5.39)
icG FeG icG,fcG

Consider the term EiEE,/EE‘Zif appearing in (5. 38). Equa-
tions (5. 14e, f, h) allow it to be written as

Z/ Aif" Z‘_\l A
ie6,fcl icG ,fel,(iHel

- 2 (Ti +Thipy = Tiigy = Tif)
ieCG,fel,(ifHed h ¢h @h
+D.P.. (5. 40)

The term - T;; can be decomposed into two parts:

(5.41)

The term C;, is the part of - T;; in which the two lines

7 and f touch a single minus bubble, and D;; is the part
in which the two lines 7 and f do not touch a single minus
bubble.
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Substituting (5. 40) into (5. 38) gives an expression for
— T; that can be introduced into the expression (5. 16b)
for Fy. Substituting this new expression for £, into
(5. 25b) and using (5.17a), (5.17b), (5.18a), (5.18b),
and (5.41) one finds that Eq. (5.24) takes the form

T+F,+Fy+F;=Fg (5.42)
where
Fy= 2 D;=D° (5.43)
icC,fel,(iHce
and
F=T- Y T,- 2T, + 2, T
s ice ' sec d feG,inel (i
+ 2 Ty - 2 T,
icciinet P e i€, unes P
+ 21 Ay~ 2 Cis
ieG ,fEC,(iHEE iCT,FEC ,(if)yEC
+D.P.. (5.44)

[The function DS is defined by (5.43) only for the present
case /¢ G. See (5.49). ]

According to (5. 1)
(5. 45)

A trivial consequence of (5.45) and (5.43) (for the pre-
sent £« G) is that

T(if)t = Ti(if)t = T(if)ft = Ti(if)ft =Dy.

D= ), Tipe= 2 Ticint
(ifycG iEG,(if)EC
N -
- Z-/ T(if)ft + ZJ Ti(if)ft-
FEG (iHEG iEG,fEC (if)cC

(5. 46)
If one uses the representation (5.46) of F;, then, for
G containing ¢,
T+F,+F +Fs= 2, (- )Ty, (5.47)
aCe
Thus, the proof of Proposition 5.2 for Case 2 can be
completed by showing that F, belongs to Q6.

Inspection’ of the bubble diagrams B that correspond
to the bubble-diagram functions F® of Fg [see (5.14),
(2.11), and (5. 41)] shows that all terms belong to < ¢
except possibly

if (5.48)
ieC fel,(ifH el

The function A;; is defined in (5. 14d, g). Introducing
the expression (5.11), and making use of the argument
of Case 4 of Proposition 5.1, one sees that this term
is also in K¢, This completes the proof of Proposition
5.2.

Pyoposition 5. 3:

°-p¢=TC_p¢ (5.49)

wgere D¢ is defined by (5.46) if G contains ¢, and by
D” =0 if G does not contain . The quantities TC and D°
are defined for all sets G hy

T = (1%)

and

(5.50a)
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Df == (D%,

Proof: 1t is sufficient to prove (5.49) for the case in
which G contains f. For the application of Hermitian
conjugation and a sign change to (5.49) gives

(5.50b)

¢ - p°=T1° - D°,
which is (5.49) with G replaced by G,

Applying this same transformation to (5.20), and
performing a summation, one obtains

- by T
- (if
i€C,fEG (ifHHET )

)

(Frip=~Toin = Toir ot Tair )
- (if) i(if) (inf i(ifyf/ e
iEG,fEC,(iNHEEF ’

(5.51)
Applying this same transformation to (5. 14e) and (5. 14{)
one obtains

- T{if) = T(if) - Ti(m (5.52)

and

=Tan=Tupn~Tins (5.53)

Consider the case in which G contains ¢. If on the
right-hand side of (5.44) one substitutes for 4, the
right-hand side of (5.14h) and then uses (5.51), (5.52),
(5.53), and (5.41), one finds that

[ — = — = _
Fe=T- 2 T~ ZJ_Tf" Zi Typt D Ty
Hete fe@ (if &b H i
+ 2 Tiy 2 Tupg
iEC (i) EC fEC (ineED
peer N
- Z Ti(if)f+ ZJ Di

iE6,fEC,(iHET i€6 ,fEC,(iHEG

=7% + Db, (5. 54)

Inserting (5. 54) into (5.42) and using (5.47) one obtains
the required (5.49).

The Functions M®: The function T was defined by
(5.12) as

TC= 25 (=)D, (5.55)
HCG
The function M® was defined by (2. 5a) as
MP= 2 (- D)"OM,, (5.56)

KCG

According to (5.1) Ty =M except when H contains, for
some (i, f), one of the four sets {(if), t}, {i, @N), 1},
{@N,t, A, 44, 6D, 1, t}. Hence, by (5.55) and (5.56) T¢
=M° if G does not include ¢, If G does include ¢, then
(5.47) together with the definitions of F, [see (5.25a)],
F, [see (5.39)], and F; [see (5.43) and (5. 46)] show that

T® = M + F;,

Since D° =0 if G does not include ¢ and is equal to Fy if
G does include £, the above result can be summarized
in the equation

T¢ =M% + D°, (5.57)

Then (5. 49) gives, for all G,
M® = §1° = - (MP)", (5.58)
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which is (2.17).

Remark: Let the G in (5. 58) be the complete set E.
Then (5. 58) says that M%, the function evaluated below
all the cuts, is

ME=j1°=M=-M". (5.59)

This result is called the Hermitian analyticity property
of the scattering function. The more general property
(5.58) says that the function M€ that corresponds to M
plus the discontinuities that take the function to its value
below the set of cuts g in G, is equal to the function M
plus the discontinuities that take the function to above
the set of cuts g in G. The analogous result with T in
place of M does not hold in general, as is shown by
(5.49).

The function D® is defined to be zero if  lies in G.
For ¢ in G it can be expressed in the form (5.43). Thus
for the set of 26 018 values of G defined by (2. 25) one
finds

D°=Dpf=0, (5. 60a)

In these cases one has, by virtue of (5.57) and (5. 58),
ME=T7% =77, (5. 60b)

The analytic properties of these functions M® are dis-
cussed in Sec. VI. It is already evident that these func-
tions M satisty the properties (4), (5), and (6) de-
scribed in the introduction.

VI. ANALYTIC PROPERTIES OF THE M¢

A. Geometric representations of Landau diagrams

The proofs of analyticity properties given in this sec-
tion are based on the existence of two different geomet~
ric representations of Landau diagrams. These two re-
presentations are discussed in this subsection.

Each internal line L; of a Landau diagram has a well-
defined direction: L, is directed from the vertex V, with
€;,,=—1 to the vertex V, with ¢;,=+1. This direction
is the direction of flow of positive energy. An arrow is
often placed on L; to indicate this direction, and L; is
said to point in the direction of this arrow, i.e., from

the vertex V, with €¢;, =-1 to the vertex V, with ¢;, =+1,

The external lines L; are also directed: Each incoming
line is directed toward a vertex V, with ¢;,=+1; each
outgoing line L; is directed away from a vertex V, with
€,=-1, (One can introduce tvivial two-line vertices to
take care of the trivial cases in which a line goes
straight through the diagram without touching any non-
trivial vertex.)

The first geometric representation of a Landau dia-
gram D° is the space—time representation discussed in
Sec. IV. Each space—time representation of D° repre-
sents a particular solution of the Landau equations cor-
responding to D°, and corresponds to some particular
point p on L(D°). In this representation each internal
line L; of D° is represented by a space—time 4-vector
A;=qa,;p;. The Landau equation p,” >0 entails that 4,
point in the direction of increasing time if o; is plus,
and in the direction of decreasing time if 0; is minus.
That is, the vertex V, with ¢; = +1 lies later than the
vertex V, with €;,, =—1if o; =+, but lies earlier if o;
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These conditions on the directions of the 4-vectors
4; impose a partial ordering requirement on the vertices
of the Landau diagram D°. In particular, for any posi-
tive- o diagram D" with nonempty L(D*) the vertices
must satisfy the partial ordering condition that the dia-
gram can be drawn so that each internal line segment
L; points from left to right. Likewise, for any negative-
a diagram D~ with nonempty L(D") the vertices must
also satisfy the partial ordering condition that the dia-
gram can be drawn so that each internal line segment
L; points from left to right. To see this, one simply
orders the vertices of the Landau diagram D* from left
to right in accordance with the increasing time of the
vertices of the space—time representations of D, and
orders the vertices of D~ from left to right in accor-
dance with decreasing time of the vertices of the space—
time representations of D,

Consider now any bubble diagram B, By definition this
diagram can be drawn so that every (explicit) internal
line runs from the right-hand side of one bubble to the
left-hand side of a bubble that stands completely to the
right of the first bubble. Thus each line of B can be
drawn as a line that points from left to right.

Consider next any D°C B, If one orders the bubbles of
B in the way just described, so that all explicit lines of
B point from left to right, and then draw each D; and D;
of D°C B as a small diagram lying completely inside the
corresponding bubble b, with all of its internal lines
pointing from left to right, then all the lines of D°C B
will point from left to right [see (4. Th)].

The representation of a D°C B as a diagram in which
every line L; points from left to right is called a flow
diagram: Positive energy flows always from left to
right in a flow diagram. This uniformity of directions
of the lines of a flow diagram is to be contrasted with
the nonuniformity of directions in the space—time re-
presentations of D°. In the space—time representations
the vectors 4A; point in the direction of increasing time
if 0; is plus, and in the direction of decreasing time if
0; is minus. For any D°C B it must be possible to draw
both a flow diagram representation of D° and also a
space—time representation of D°, if L(D°) is nonempty.

The constraints imposed on D° by the existence of the
flow diagram representation can be expressed in terms
of the concept of a flow line.

Definition 6.1: A flow line is an ordered sequence of
internal line segments L; of a Landau diagram such that
the leading end point (¢;, =+1) of any L; in the sequence
except the last one is the trailing end point (€, =— 1) of
the next one in the sequence. Thus positive energy flows
always in the same direction along a flow line: It flows
from the trailing vertex of the first L; of the sequence
to the leading end point of the final L;, These two ver-
tices are called the initial and final vertices of the flow
line. In the flow diagram representation of D° the final
vertex of any flow line stands to the right of the initial
vertex of that flow line.

Definition 6.2: A flow line V, -V, is a flow line with
initial vertex V, and final vertex V.

Definition 6.3: A maximal flow line is a flow line that
is not a proper subsequence of any other flow line.
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B. Space—time ordering theorem

The proof of the analytic properties of M® is based on
a theorem proved in this subsection. This theorem de-
pends on two lemmas.

Lemma 6.1: Let V, and V be two distinct vertices of
a comnected Landau diagram D. Suppose X is a set of
lines of D such that the cutting precisely once of each
line of X separates D into two disjoint diagrams D, and
D, where V, lies in D, and V, lies in D,. Then there
is a subset X° of X such that the cutting precisely once
of each line of X° separates D into two diagrams D,°
and D such that D,° is a connected diagram that con-
tains V,, and D¢ is a connected diagram that contains
Vs, and the two diagrams D,° and DS exhaust D.

Proof: The cutting of the lines of the set X separates
D into a number of connected parts. Let DS’ be the con-
nected part containing V.. Let X, be the set consisting
of the lines of X that lie partly in D', Let X° be the
subset of X that consists of each line L; such that the
cut in L; can be reached from V, by a path in D that is
not cut by the set of cuts in the lines of X, This set X*
is the desired set: Cutting precisely once each line of
X° separates D into the two connected parts D,° and DS .

It is clear that cutting the lines of X° disconnects the
part of D that is connected to V, from the part that is
connected to V,, for any path in D from V, to V, would
have to enter DS" at the cut on some line of X,. But the
first such cut reached by this path must be a cut on a
line of X°. Thus the cutting of the lines of X° definitely
separates D into at least two connected parts D, and
DS, What must now be shown is that these two parts
exhaust D.

Consider the diagram D cut on the lines of X°. Sup-
pose there is a point x that is not connected in this cut
diagram to either V, or V. This point x is connected in
the original connected diagram D to the point V, by some
path P. Since x is, by assumption, not connected to V,
in the cut diagram, the path P must pass through the
cut in at least one line of X°. Let C be the first cut in
X° reached on the path P from x to V,. Then x must be
connected in the cut diagram to one side or the other of
the cut C. But each cut in the lines of X° is connected in
the cut diagram on one side to V,, since X° is a subset
of X and on the other side to V,, since each cut of X°
can be connected to V, by a path not cut by any cut in
X,. Thus x must be connected in the cut diagram to
either V, or V,, contrary to the original assumption
about x. Thus no such x can exist. This means that the
two connected parts D, and D of the cut diagram ex-
haust it.

Lemma 6.2: Let V, -V, be a flow line of a flow dia-
gram D°. Let X be the set of lines of D° that are cut by
a plane 7 that lies perpendicular to the flow axis, that
lies between V, and V,, and that touches no vertices of
IP. Then the subset X° of X of Lemma 6.1 is such that
each L; in X° has its leading end point in DS and its
trailing end point in D,°.

Proof: The plane T cuts D° into the parts D, and D,,
where D, lies to the left of T and D, lies to the right of
T. The construction in Lemma 6.1 ensures that Dsc' is
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a subset of D,. Hence D" also lies to the right of 7.
Moreover, X° is a subset of the set X of lines of X that

touch D', Thus every line of X° touches DS’, and hence

has its leading end point in D£’, which is contained in
DS. Thus the trailing end points of the L, € X° must lie
in D,°.

Definition 6.4: Let V, and V, be two vertices of a
Landau diagram D°. Let % be a plus or minus sign. A
V, 4V cut set of D° is a set of internal lines of D’ such
that D’ is separated by the cutting precisely once of
every line of this set into two connected diagrams
D°(V,) and D°(V,), where V, lies in D°(V,) and V, lies in
D°(V,), and such that each line L; of the cut set points
from D°(V,) to D°(Vy), and has a sign o, =7 or .

Theovem 6.1: Let B be any connected bubble diagram.
Let D° be any D°C B that has a flow line V, - V.. Let 7
be either plus or minus. Suppose D° has no V, LV, cut
set, Then for every space—time representation of D’
the vectors w, and w, to the vertices V, and V; satisfy

(6.1)

where V" is the open forward light cone and V™ is the
open backward light cone.

=7
W= w, e V7"

Proof: Suppose 7 is plus. And suppose that the points
V., and V¥, both lie inside some single minus bubble &
(i.e., they are vertices of the Dj that replaces & in the
construction of D° C B). In this case the flow line V, -V,
must consist wholly of line segments L; that also lie in-
side this minus bubble, and hence have signs o;=-.
This is because the condition that the bubbles of B
be partially ordered precludes the possibility that a
flow line V, - ¥ begin and end in the same b, but pass
outside 4. But if the lines L; of V, -V, all carry minus
signs, then the Landau equations that define the space-—
time representations of D° entail that each of the cor-
responding 4&; point into the backward light cone. Thus,
by virtue of the ordering conditions on the L; that make
up a flow line, condition (6.1) will be satisfied.

Suppose, on the other hand, that V, and V, do not lie
in the same minus bubble. Then one can construct a
V, = Vs cut set of D°. To do this, simply draw the flow
diagram D° by first making all the minus bubbles b of
B extremely tiny, and then replacing each tiny minus
bubble b by a tiny D;. The D, are not made tiny. Since
the minus bubbles are tiny, and V, and V do not lie in-
side the same minus bubble, one can draw a plane T
that lies perpendicular to the flow axis, that lies be-
tween V, and V,, and that does not touch any vertex of
I¥ or any line that lies inside any of the tiny minus bib-
bles. The X° of Lemma 6.2 is thena V, >V, cut set of
D°, Thus the assumption of the theorem is not satisfied
in this case, and (6. 1) need not be proved., This com-
pletes the proof for the case n=+. For the case n=-1
the proof is completely analogous.

C. Skeleton diagrams

Each flow diagram D has a unique skeleton diagram
D,, which is constructed as follows. Consider the set
of maximal flow lines of D, Regard as equivalent any
two of them that touch exactly the same set of external
vertices. (External vertices are vertices that touch ex-
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FIG. 6.1. The
[2] 76 skeleton dia-
grams for 3—3
processes, The
indices ¢ and f
run over
,2,3), and
4,5,6), re-
spectively, The
number in
square brackets
below each fig-
ure is the num-
ber of skeleton
diagrams repre-
! sented by that
figure.

ternal lines.) Draw a diagram consisting of the external
vertices of D, the external lines of D, and one internal
(flow) line ! for each equivalence class of maximal flow
lines of D. This line ! is drawn so that it touches pre-
cisely those external vertices that are touched by each
member of the corresponding equivalence class. Now
delete any line [ that touches a set of external vertices
that is a proper subset of the set of external vertices
touched by any other line ’. The resulting diagram D;
called the skeleton of D.

Each flow diagram D having three incoming lines and
three outgoing lines has a unique skeleton diagram D,
that is one of the 76 skeleton diagrams shown in Fig.
6.1.

In constructing these diagrams use is made of the
stability requirements, which demand that each nontri-
vial vertex have at least two incoming lines, and at
least two outgoing lines. Each maximal flow line must
therefore begin at a vertex that has at least two in-
coming external lines, and must end at a vertex that
has at least two outgoing external lines.

D. Path of continuation (off-mass-shell)

The aim of the present subsection is to construct for
each of the 26 018 boundary values M® and for each pos-
sible singularity surface L(D°) of MC a path of continua-
tion that continues the function M into itself around
L(D,). However, the complications arising from the
mass-shell constraints are ignored. When these con-
straints are ignored the rule of continuation can be for-
mulated so that it depends only on G and on the skeleton
of D°. And for a given skeleton D, the rule depends on
G only through the question of whether certain critical
g’s associated with D lie in G or G. These critical g’s
are those that label the critical channels of D, which
are now described.
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For each skeleton D; there is a unique set of critical
channels g. The critical channels g corresponding to a
given D; are the channels g such that D; can be separat-
ed, by cutting some of its internal lines /, into two con-
nected parts Dy(J,) and Dy(J,), where D.(J,) contains all
the external lines j J,, and D(J,) contains all the ex-
ternal lines j ¢ J,. Moreover, all the cut lines / run
from D,(J,) to D,(J,). The critical channels correspond-
ing to several skeletons D, are indicated in Fig. 6. 2.
(For each g the sets J, and J, must be selected so that
J, contains at least two indices f, and J, contains at
least two indices i. Otherwise the conditions given above
cannot be satisfied.)

For any given G a set of signs 7, is defined as follows
[see (2.25)]: The sign 7, is plus if g lies in G and is mi-
nus if g lies in G. Symbolically, 7, can be defined by
the set of conditions

gc G"% (for every g< E) (6.2a)
where

G*=G (6. 2b)
and

G =G. (6. 2¢)

The rules of continuation to be constructed here apply
only to the 26 018 boundary values M® defined by (2. 25).
For these functions one has, according to (5. 60),

ME=T° =77, (6.3)
Thus M® can, by virtue of proposition 5.2 and Eq.
(4.14), be written in two alternative forms:

M= 2. FP (6.4+)

Bcf3¢
and
M=%, FB, (6.4-)
Bc 6

where the notation 8¢ =A% and A% =A% is used. The sets
A% and A€ have the following properties: No D, A% has
a positive- & g-channel cut set for any g in G; no D, C ¢
has a negative- &« g-channel cut set for any ¢ in G.

If one introduces the notation of (6.2) and writes + a
for positive- @ and — o for negative- « then the proper-
ties of A% and A% can be combined into the following
statement:

For any G and g let 7=7,, Then no I’ < A% has an
na g-channel cut set,

The rule for continuing M® past any L(D°) will be derived
by combining this property of BS with Theorem 6.1, and
then using the structure theorem described in Sec. IV,

t i t f f
ii
(a} (b}

FIG. 6.2. The critical channels g of several skeleton diagrams
D, are indicated by lines g that separate D into the two parts
Dy (7)) and Dg(J,).

(¢)
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Consider any fixed G. Let D be the skeleton shown
in Fig. 6.2(a). The rule for continuing M®(p) past all
L(D®) that correspond to D° having this skeleton D, will
now be derived.

The diagram D, [i.e., Fig. 6.2(a)] has only one cri-
tical channel g, namely the channel g={. Let 7 be the
7, defined in (6.2). Let M® be represented by the for-
mula (6.4m). Then according to the statement just given
of property (4.12), no D°CA¢ has an 5 t-channel cut
set.

This result implies that the suppositions of Theorem
6.1 are valid for every Bc A5 and every D°C B such
that D° has the skeleton D,, provided V, and V; are
identified as the initial and final vertices of D, respec-
tively. This is because any V, >V, cut set of I° is also
an 7o t-channel cut set of D° [see (4.12).] Indeed, since
D? has only the two external vertices V, and V shown
in Fig. 6.2(a), any cutting of the internal lines of D°
that separates D° into two parts D°(V,) and D°(V,) with
V, in D°(V,) and V, in D°(V,) must also separate D° into
two parts D°(J,) and D°(J,) such that D°(J,) contains all
the external lines j& jg and D"(Jg) contains all the ex~
ternal lines je J,. In fact, D°(J,) would be identical to

D°(V,), and D°(J,) would be identical to D°(V).

Since the suppositions of Theorem 6.1 hold, the con-
clusion holds: Equation (6. 1) is true for all space—time
representations of all D°C A¢ that have as skeleton the
D, of Fig. 6.2(a), with V, and V, identified in the man-
ner described.

According to (4.6) and (6.47), the singularities of M°®
are confined to the union of L(D") over D"CBf. Suppose
p lies on L(D°) for D° C 5§ only if D° has skeleton D,
(This supposition will be removed later.) Then, by vir-
tue of the conclusion stated in the preceeding paragraph,
Eq. (6.1) holds for all w in the set

Qp)= U _Q8(p),

Bg[jg

where Q°(p) is defined in (4.8). Thus if C(p) is defined
by

(6.5a)

Cp)y= n

Bcf8

where C®(p) is defined in (4.9), then (6.1) and (4.9)
show that C(p) contains all points ¢ that satisfy, with ¢,
=+1and €i:— 17

Ch(p), (6. 5b)

2 €q,== 24 €q;€ V.
i&d i€ ¢

(6.6)

But then, according to consequence (2) of the structure
theorem, which is described below (4.9), all of the
(finite number of) bubble diagram functions F® that oc-
cur in the expression (6.47) are boundary values of
functions that are analytic at all mass-shell points suf-
ficiently near p for which ¢ satisfies (6.6). (Strictly
speaking, the cone of analyticity is not V-" itself but
rather any cone that is contained with its closure, apart
from the apex at ¢=0, in V=", This slight diminuation
of all cones of analyticity will always be taken as under-
stood in the discussion that follows. )
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This means that M® can be continued about all L(D°)
that correspond to D° having the skeleton D, of Fig,
6.2(a) by means of a small detour through the region
(6.6).

Next let D, be Fig. 6.2(b). The rule for continuing
any fixed M® past all L(D°) associated with this D, is
now derived.

Consider first the critical channel 7 of D;. Let 1 be
7;, and use the representation of M® given by (6.47).
Let the B of Theorem 6.1 be any Be 3¢, and let D° be
any D°C Be 3¢ having skeleton D,. Finally, let the ver-
tices V, and V, of Theorem 6.1 be the vertices of Fig.
6. 2(b) that stand just to the left and just to the right of
the i-channel line of Fig. 6.2(b), respectively. [That
is, V, is the left-most vertex of Fig. 6.2(b), and V, is
the vertex at which the external line ¢ terminates. ]

We know that no D° 3% has an na i-channel cut set.
This immediately implies that no D°C A% having skele-
ton D, has a V, L V, cut set in which the last two vertices
of Fig. 6.2(b) lie in D°(V,). And the possibility of any
other V, - ¥, cut set is ruled out by the existence of the
flow lines represented by the two right-most lines [ of
Fig. 6.2(b): These lines would run the wrong way across
any cut separating a D°(V,) containing V, from D%(V)
containing V, if either of the remaining two vertices
were to lie in D°(V,). This is shown in Fig. 6.3, which
is explained in the text that follows.

The possible V, ™ V, cut sets can be examined by
placing V, and V, on the left- and right-hand sides of a
vertical line, and placing the other vertices on the two
sides of this line in all possible combinations. There
can be a V, 1V, with the parts D°(V,) and D°(V,) of D°
containing the external vertices lying, respectively, on
the left- and right-hand side of the vertical line only if
all the lines of the skeleton diagram run from left to
right across the vertical line. Only figure (a) satisfies
this condition. However, this way [Fig. 6.3(a)] of
achieving a V, >V, cut set of a D°CA f having D, as skel-
eton is ruled out by the property of 4.

Since the suppositions of Theorem 6.1 hold, the con-
clusion holds: Every space—time representation of
every I’ /% that has D, [Fig. 6.2(b)] as its skeleton
is such that the vector &4 =w;- w, lies in V"", Here w,
and «, are the space~time vectors to the leading and
trailing vertices V and V, of .

Essentially the same argument can be made for the
pair of vertices lying on either side of the ¢ line in Fig.

AP AN Y,
f
i ; FIG. 6.3.
(o) (b} Diagr?.ms for
examining
f f possible
i 2 vg cut
sets.,
: Ve \
VS VS

i
(¢} (d)
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FIG. 6.4, Each g€ can be considered to be the imaginary ener~
gy carried along an open path that contains only one internal
line.

6. 2(b), and also for the pair of vertices lying on either
side of the f line, The results of the three similar argu-
ments can be summarized in a systematic way.

For each of the three critical channels g associated
with Fig. 6.2(b) define

[ g
A =0 -,

6.7

where wg and w,® are the 4-vectors to the vertices V.*
and V,f that lie just to the right and just to the left of
the line g in Fig, 6.2(b) corresponding to channel g.
(For example, w, and w,’ are the vectors to the ver-
tices lying at end points of the lines f and /, respective-
ly.) Then the property of A% for n=1,, together with
Theorem 6.1, shows that, for each critical channel g
of Dy,

& e Ve (6.8)

for every space—time representation of every D"Cﬁfg
having as skeleton the D, of Fig. 6. 2(b).

For any D° having as skeleton the D, of Fig. 6. 2(b)
the function occurring on the right-hand side of (4. 9a)
can be written in the form

~ 20 qi€yw,=220°4",
&

JEExt
rcVer

(6.9)

where g runs over the critical channels associated with
Fig. 6.2(b), and ¢° is the imaginary part of the momen-
tum—energy that runs along the line ! of Fig. 6.2(b) that
is cut by the line g corresponding to channel g. In
particular,

4t =gyt q5+q5- i, (6.10a)

=gyt 45T qe=a T az T a3, (6.10b)
and

& =qy a5t q5- a5 (6.10c)

The various ¢° are indicated in Fig. 6.4,

We shall now temporarily ignore the mass-shell con-
traints, and suppose that our functions MC can be ex-
tended some small finite distance off-mass-shell, and
that the only singularity surfaces encountered in some
sufficiently small neighborhood of any real mass-shell
point p are the singularity surfaces obtained in the mass-
shell theory. If continuations through these off-mass-
shell regions are thus allowed, then the rules of conti-
nuation can be stated in a simple way, which will be
described next. The complications associated with the
restriction to the mass shell, and with the possible
conspiracies among singularities corresponding to dif-
ferent skeleton graphs will be considered in the follow-
ing subsection.

The results (6. 8) and (6. 9) together with the i¢ rule
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stated below (4.9) show that if g labels any one of the
three critical channels of D and if p lies on L(D°) for

°C A% only if D° has skeleton D,, then M® is the bound-
ary value of a function that is analytic near p in the ¢-
space region satisfying

eV
and
&' =0 (6. 11b)

where g’ runs over the critical channels g’ #g. This
equation gives three different regions of analyticity,

one for each critical channel of D;. The boundary values
are all the same (distribution) M®. Thus the generalized
edge of the wedge theorem!® implies that the functions
in these three domains are parts of one single analytic
function that is analytic near p also in the g-space re-
gion restricted only by

(6.11a)

g* < V"™ all critical g, (6.12)

Equation (6.12) gives a domain through which M® can
be continued (off-mass-shell) past all singularities sar-
faces L(D% of M® that correspond to D° having as skel-
eton the diagram D, shown in Fig. 6.2(b), Essentially
the same argument applies for any skeleton diagram of
Fig. 6.1 that does not have closed loops [i.e., the D,
of Figs. 6.2(a)—(k)]. For any given one of these free
diagrams D the ¢ associated with each critical channel
g of D;is a well-defined combination of external vec-
tors, and the domain defined as the intersection of some
sufficiently small neighborhood of p with the domain of
the form (6. 12) is a domain of analyticity of M®, pro-
vided p lies on only those singularity surfaces L(D°) of
M® such that the skeletons of these D° are all the speci-
fied tree diagram D,

The rule obtained above is simple and explicit. M°
can be continued into itself around all the singularity
suarfaces L(D°) that correspond to any specified tree
skeleton diagram D; by following any infinitesimal de-
tour that satisfies the following conditions: For each
critical channel g of D the variable ¢ is shifted into
the forward light cone if MPC is evaluated above the g
cut (i.e., if gc C), and into the backward light cone if
MC® is evaluated below the cut g (i.e., if gc G).

Now let D, be the box diagram of Fig. 6.2(c). Let G
be any fixed G that satisfies the conditions (2. 25). These
conditions require [with 7 and f fixed as in Fig. 6.2{(c)]
that the conditions

N === M= = T, (6,13)

do not all hold. This requirement ensures that for some
preferrved internal line segment ! of Fig. 6. 2(c) the fol-
lowing condition holds: The two signs 7, corresponding

FIG. 6.5.
Diagram
showing the
signs n, as-
sociated with
the lines g.
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FIG, 6.6. Diagrams for examining possible v, L. v cut sets.

to the two lines g of Fig. 6.2(c) that cross the preferred
line / are equal. In fact, the requirement that (6.13) be
false ensures that at least two internal line segments !/
of Fig. 6.2(c) enjoy this property. In the special case
illustrated in Fig. 6.5, in which %, ===, =", =+,
one of these two preferred lines ! is the line on the
right-hand side of the box, and the other is the line on
the left-hand side of the box.

The flow line V, -V of Theorem 6.1 is now taken to
be one of the preferred lines /, and the vertices V, and
Vs are taken to be the initial and final vertices on this
flow line, respectively. Thus if the flow line V, -~V of
Theorem 6.1 is the preferred line 7 on the left-hand
side of the box in Fig. 6.5 then the vertices V, and V;
are those indicated in Fig. 6.5.

The two lines g that cut across the preferred line I
correspond to two of the critical channels of D;, which
are called g; and g,. The 7 in Theorem 6.1 is taken to
be N=1 =N,

With this choice of 1 the following property holds: No
D"Cﬁf has an na g;-channel cut set or an na g,;-channel
cut set. These two conditions, together with the condi-
tions on the directions of the lines of D, imply that no
D’ 8¢ hasa V, =V, cut set. (See Fig. 6.6)

In Fig. 6.6 the flow line V, -V, is assumed to be the
line / that lies on the left-hand side of the box, as in
Fig. 6.5. Cases (c) and (d) cannot give a V, =V, cut set
because a flow line points from D(V,) to D{V,). On the
other hand, the cases (a) and (b) cannot give a V, L V,
cut set for any D“CBf,;, because no D"CB,? can have a
Mo g-channel or g,-channel cut set, for =717, =17,,.
Hence the suppositions of Theorem 6.1 are satisfied.

From Theorem 6.1 one concludes that
(6.14)

for all space—time representations of D°CA¢ having the
box diagram skeleton diagram shown. Similar arguments
show that (6. 14) holds for each preferred line I of D,
with V, - V, the flow line I and 7 now 7(l), the common
signs 7, associated with {.

A=wg=w,c V"

The function occurring on the right-hand side of (4. 9a)
can be written
- 2 qjejrwr :EAlql °

JECExt 1
rc Ver

(6.15)

Here ¢' is the imaginary part of the momentum—energy
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flowing along line I of the box diagram D,. (Momentum-—
energy is required to be conserved at each of the four
vertices. See Fig. 6.7.)

The imaginary part of the momentum—energy flowing
in and out of the diagram can be considered to flow along
the internal lines I =1, 2, 3, 4 of the box skeleton diagram
D,. The amount flowing along line / is ¢'. This decom-
position is not unique. However, the sum occurring on
the right-hand side of (6.15) is not affected by this lack
of uniqueness since the contribution associated with con-
served flow around the loop is zero.

The i€ rule (4.9) ensures that M® is analytic at points
sufficiently near p that lie in the region

(6.16a)
(6.16b)

qte V-n(l)
q¢"'=0 (I'#1)

where [ is any preferred side of the box. This rule holds
for all points p that lie on no L(D°) for D’ CA¢ except
those having as skeleton the particular box diagram D
under consideration.

This completes the derivation of the off-mass-shell
i€ rules associated with the various individual skeleton
diagrams.

E. Path of continuation (on-mass-shell)

The rule obtained above for continuing M® past L(D°)
is simple because it prescribes a set of allowed detours
that is independent of the particular point p on L(D°).
However, the rule is deficient because in many cases
the set of allowed detours contains none that remain on
the mass shell. Moreover, possible conflicts between
the rules associated with different skeleton diagrams
have not been considered: It is conceivable that a set of
points lying on surfaces L(D°) associated with different
skeleton diagrams might conspire to block the continua-
tion. These two deficiencies can usually be remedied by
considering paths of continuation that depend on the real
point p around which the continuation takes place. How-
ever, there is a set of exceptional Landau surfaces past
which no mass-shell continuations are expected. This
set of exceptional Landau surfaces is now described.

Two space—time representations » and »’ are said to
be extevnally similar if and only if every external tra-
jectory line I} of »’ can be brought into coincidence with
the corresponding line /; of » by means of a single (po-
sitive or negative) scale change and a single overall
space—time translation of 7’ relative to ». The external
trajectory line /; is the space—time line that contains
the external trajectory associated with the external va-
riable p;cp. Two representations can be externally

FIG. 6.7. Flow of imaginary momentum energy.
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similar only if they generate the same point p=(p,, - - -
p.), since only then are the corresponding lines ; and
1] parallel,

3

Two space—time representations » and »” are said to
be externally equivalent if and only if (1) the two repre-
sentations are externally similar, and (2) any scale
change that brings every pair of lines I; and 7] into co-
incidence also brings the corresponding pairs of external
vertices v; and v} in coincidence.

Each point on any Landau surface is generated by
many different space—time representations. In the
most common case the various representations generat-
ing a given point are all externally equivalent. A simple
example is provided by the normal threshold diagram
having two vertices connected by two internal lines, and
a second diagram in which these two internal lines are
joined also at a third (internal) vertex, to give a sausage
diagram. These two diagrams give coincident Landau
surfaces.

The surfaces generated in this way only by externally

equivalent space—time representations are unexception- .

al Landau surfaces. And surfaces generated only by re-
presentations no two of which are externally similar are
also unexceptional. The exceptional Landau surfaces
are the codimension-one analytic manifolds each point
of which is generated by at least two externally similar
representations that are not externally equivalent. An
important example is the ice cream cone diagram sur-
face in the equal mass case. In the general unequal
mass case this surface has two nonpositive-« branches.
These coincide when all internal and external masses
become equal. The i€ rules associated with these two
branches are opposite in cases of interest, e.g., for
M or M’. Thus the mass-shell continuation is blocked
in the equal mass case by the coincidence of these two
surfaces having opposite 7€ rules.

In this equal mass case every point on the coincident
pair of surfaces is generated by an infinite set of ex-
ternally similar representations no two of which are ex-
ternally equivalent. In these representations two of the
three vertices coincide, and the external trajectory line
attached to the third vertex passes through all three ver-
tices. The infinite set of externally similar representa-
tions is generated by a scale change.

In the example just described all of the external tra-
jectory lines pass through a common point. Such repre-
sentations are called star-graphs. For star-graphs a
scale transformation always generates an infinite set of
externally similar space—time representations no two
of which are externally equivalent. Thus all codimen-
sion-one {or zero) Landau surfaces generated by star-
graphs are exceptional. Conversely, all exceptional
Landau surfaces known to us are generated by star
graphs.

The 26 018 boundary values MC continue on-mass-shell
into themselves past all but the exceptional Landau sur-
faces. That is, if Jg is the set of diagrams

be=B.°04°

and

6.17)
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L,= U
poc/f) G
Then Mg continues into itself, on-mass-shell, past the
surface

2'o =Lg-Ls®

L(D°). (6.18)

where L;Z is the closure of the union of all exceptional
Landau surfaces generated by representations of D°
ellg.

Remark: The existence of a space—time representa-
tion is a necessary condition for a singularity, but it is
not sufficient. Representations that do not correspond
to singularities of M® can be systematically excluded
from the set of all representations D° =/); without in-
validating our arguments.

It is shown in appendix A that there is, for each G, a
codimension-two algebraic variety W; such that for any
point p on Lg — W, the following three properties hold:

(a) There is a neighborhood U of p such that I:G NnUis
a real codimension-one analytic submanifold of /. This
means, in particular, that the surface L; near p isa
smooth codimension-one surface with a well-defined
smoothly varying normal,

(b) If R ¢ is the set of all representations of all D°C /[,
then all of the #(p) € R that generate p are externally
equivalent.

(c) If #(p) =R ; generates p then the external trajectory
lines /; of 7(p) do not all pass through a common point;
i. e., there is no space—time point v that lies on every
external trajectory line /; of 7(p).

[Property (c) follows from (b), but is explicitly men-
tioned for later use. |

The set W, is a codimension~-two algebraic subvariety
of /i, and hence it can not block the analytic continua-
tion. Thus it is sufficient to prove that each M® can be
continued past Lo — We =L~ W.

Inspection of (4.9) shows that the i€ rule at any point
p is determined by the locations of the external vertices
of all of the representations »(p) that generate p. It will
be noted later that the condition on the domain of analy-
ticity C(p) that arises from any individual ¥(p) € R that
generates any p ¢ L — W defines a full upper-half plane
of analyticity in appropriate mass-shell variables. Thus
it is sufficient to show that the conditions on C(p) asso-
ciated with all of the different representations that gen-
erate any p< L — W are identical,

Property (b) ensures that, apart from positive or neg-
ative scale changes and overall space—time translations,
the location of each individual external vertex v; is the
same in every representation #{(p) € A that generates any
tixed p ¢ L - W. The positive scale changes and the over-
all space—time translations do not effect the i€ rule.
Thus, in view of (6.4), it need only be shown that for
each point p € I- W, and each G, there is a sign 7 such
that if Y is the restriction of K to representations of
diagrams D°C S, then no two #(p) cK§5 that generate p
are related by a negative scale change, where a nega-
tive scale change is a scale change that changes the
signs of all of the difference vectors w;— w,.
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FIG. 6.8. The three skeleton diagrams for the case n’=4.

Let K3(D,) be the set of all representations of all dia-
grams D°C 3¢ that have skeleton D,. It'was shown in
the preceding subsection that for each G and D, there is
a pair of external vertices V, and V, and a sign 7 such
that for all representations »() e R¢(D,) the following
condition holds:

(6.19)

This condition is not maintained by a negative scale
change. Thus for any G, D, and p I- W, no two of
the externally equivalent »(p) e K¢(D°) that generate p
can be related by a negative scale change. This result
would complete the proof, were it not for the possibility
of conspiracies among the singularities associated with
different skeletons D,

wg=w,e V7,

To complete the proof it will now be shown that for
each G and p € L — W there is a pair of external vertices
V, and Vs and a sign 7 such that (6.19) holds for all re-
presentations 7{p) RS that generate p. This condition
precludes the possibility that any two of the externally
equivalent »(p) =R ¢ that generate p are related by a
negative scale change. Therefore, all of the represen-
tations 7{(p) cR S that generate p give exactly the same
constraint on the region C(p) of analyticity.

To obtain this result let p be any fixed point in L-w.
Consider all of the representations 7(p) €R that generate
p. The six external vertices V; of any such representa-
tion lie on a set of n’ space—time points, where »n’
=2,3, or 4. [The case n'=1 is ruled out by property
(0).]

If n’ =4 then each representation »(p) R that gener-
ates the fixed p must be a representation of a D° =/} that
has one of three possible skeletons. Apart from trivial
modifications these three skeletons are the three indi-
cated in Fig. 6.8. The different lines in this figure are
identified by their slopes. The vertical lines can be
either initial or final.

Consider first the box diagram D, of Fig. 6.8. It was
shown in Sec. VL. D that for each G the skeleton diagram
D, has a preferred line V, — V. Let this preferred line
be, for example, the upper left-hand internal line of
D,. Then the vertices V, and V; are indicated by the
heavy dot and little circle, respectively. In the figure
the common signs 7, of the two lines g that cross the
preferred line are shown as plus. Equation (6. 14) gives
(6.19), with 1 equal to these two common signs 7,. For
the second skeleton in Fig. 6.8 this same condition
(6.19) holds as a consequence of (6.8), and the condi-
tion that the sign 1 be equal to these two common signs
M. For the third skeleton the same condition (6. 19)
holds for the same reasons, together with the fact that
the sum of two vectors in V™" also lies in V-". Thus all
of the »{p) RS that generate this arbitrary »’=4 point
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p satisfy the same condition (6.19). Hence no two can
be related by a negative scale change.

Consider next the case n’=2. The possible skeletons
are shown in Fig. 6.9.

Let 7 be fixed to be the sign 7, associated with the
channel g defined by the first of these diagrams. In the
figure 7 is shown as plus. The various signs 7, of the
lines g in the second (i.e., box) diagram are then fixed
by (2.25), together with the requirement that the line
joining the two heavy dots cannot be a preferred line,
nor can the line joining the two little circles be a pre-
ferred line. For with every preferred line there is a
light cone condition (8. 14), and such a condition would
contradict the n’ =2 condition that the two vertices re-
presented by heavy dots lie at the same space—time
point, or the analogous condition on the little circles.
The remaining two lines of the box are then the two pre-
ferred lines, and the condition (6. 14) associated with
them gives the same condition (6.19) as was obtained
from the first skeleton.

For the next three diagrams of Fig. 6.9 the condition
(6. 8) immediately gives the same condition as was ob-
tained from the first two diagrams. For the final dia-
gram the n’=2 condition that the two vertices represent-
ed by heavy dots lie at the same space—time point, and
the similar condition for the little circles, together
with (6.8), require that the signs associated with the
lines g be alternating, as shown. The upper case gives
the desired condition (6.19). The lower case contradicts
(2.25). Thus for all »’=2 points there is a common con-
dition (6. 19), and a negative scale change is again
precluded.

For the »’ =3 points similar arguments work, There
are essentially two cases. The first is shown in Fig.
6.10.

In this first case the two signs in the first diagram are
the same, say plus. In this case the V, and V are cho-
sen to be the heavy dot and little circle, respectively.
Then the remaining three diagrams shown, by argu-
ments essentially the same as those given above, that
the same condition (6. 19) holds in all four cases.

The second #’=3 case is shown in Fig. 6.11.

In this case the two signs in the first diagram are oppo-
site, say plus and minus as shown. The signs in the box
diagram are then forced to be those shown by Eq. (2.25)
and the n'=3 condition that the lower right-hand line

FIG. 6.9. The
skeletons for
the case n' =2,

+ +
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FIG. 6,10,
The skele-
tons and
signs for the
first case

n =3.

+ + + ; +
+ o+ +
not be a preferred line. The signs in the last diagram
are forced to be those shown by Eq. (2.25) and the »’
=3 condition that the last two signs be opposite. These

diagrams show that the same condition (6. 20) holds in
all four cases.

The arguments just given show that for any fixed G
and fixed p € L ~ W there is a sign 71 such that all of the
»(p) e RS that generate p give precisely the same condi-
tion on the cone of analyticity C(p). It remains to show
that the corresponding domain of analyticity contains a
path that remains in the mass shell. It was shown in
Ref. 15 that each individual representation () restricts
C(p) to a full half plane in appropriate mass-shell vari-
ables, provided the external trajectory lines I; of »(p)
do not all intersect at a common point. This condition
is satisfied at each point p € L-w, by virtue of prop-
erty (c).

APPENDIX A: PROPERTIES OF LANDAU
SURFACES

Several properties of Landau surfaces are derived in
this appendix. A principal result is that each Landau
surface L(D)’ lies in a codimension-one algebraic sub-
variety of //i, where/li is the (3n - 4 =N)-dimensional
mass shell restricted by momentum—energy conserva-
tion, and where the prime on L(D°)’ means that contri-
butions to L(D°) from star-graph representations are
excluded.

An earlier proof that Landau surfaces lie in algebraic
varieties has been given by Chandler?’ and Kershaw. %
However, in those works the Landau surfaces were de-
fined by the a-form of the Landau equations.?* These
a-form equations are not equivalent to the original
Landau equations, for they have extra solutions, which
arise from points in « space where a certain discrimi-
nant C{a) vanishes. These extra solutions are called
second-type singularities.® There are cases, for ex-
ample the Landau surface associated with the ice cream
cone diagram, where these so-called second-type sin-

FIG. 6.11.
The skele-
tons and
signs for the
second case
n' =3,
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gularities cover the entire mass shell/ (i.e., the re-
solvent is identically zero**). These second-type sin-
gularities spoil the earlier proofs, but are not pertinent
in the present work,

The singularities of the functions M® lie, by virtue
of the structure theorem, on a union Landau surfaces
L(D°), Each Landau surface L(D°) is defined by a cor-
responding set of equations (4. 2a—h). These equations
are essentially the original Landau equations. Hence
the functions M® do not have second-~type singularities
in their original real domain of definition.

Each real Landau surface L(D°) lies in a correspond-
ing complex Landau surface L(D) defined by Egs.
(4.2a—d). It is convenient to eliminate the conservation
law equation (4. 2b) by introducing loop momenta. Let
q; be the momentum—energy associated with closed
loop ! and let &, be the momentum—energy associated
with the open loop e¢. Then the momentum—energy p; of
line j is

b :Pj(k’q)EZ?/njoIt +2 Mok (A1)

e

where the 7;; are as in (4, 2¢), and the 7,, are the ana-
logous quantities for the open loops e. The (n- 1) inde-
pendent open loops e enter and leave the diagram D via
the n external lines of D. For definiteness the open loop
e is assumed to leave D via external line ¢ and to enter
D via external line n. Then %, equals +p, for e=1, ...,
w~1, (The lower sign is for initial e.)

With the aid of (A1) the Landau equations (4.2a—d) can
be reduced to the equations

2 a;p;k, @)n; =0 (all ), (A2)

pjz(k, q)-mf=0 (allj), (A3)
and

2.a%-1=0, (A4)

The coefficient 7;; is zero if j labels an external line.
Thus the @; needed in (A2) include only those corre-
sponding to internal lines. However, parameters «; cor-
responding to external lines can be introduced, and the
external~loop analog of (A2) considered:

2aplk,@)n;,=0 (all o). (A5)

Equations (A2)—(A4) define the Landau surface L(D).
Equations (A2)-(A5) define an associated subsurface
L¥D) < L(D). Equation (A5) is the requirement that all
of the external trajectory lines pass through some com-
mon point. That is, each external line is assigned a
parameter @;, and hence also a space—time interval
A;=a;p;, and all of the external loops are required to
be closed loops. This condition is property (c) of Sec.
V9. E.

Let z={(zy, -+ -, 29 =(k, q, @) denote the set of compo-
nents of the vectors k, and ¢, together with the o; for
j < Int. Then the Landau equations (A2)—(A4) are a set
of algebraic (i.e., polynomial} equations

g (z)=0. (AB)
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The set of points z € €° that satisfy all of Eqs. (A6) is
the algebraic subvariety V{g)=V of €. The set V* de-
fined by

v*={z e V: (A5) is soluble} (AT

is the set of point z € €° that satisfy both (A6) and (A5)
for some set of «; with j ¢ Ext.

Let » be the set of open loop momenta (ky, - --, 2,1},
and let g;°(%) be the functions

g5 (k) :Pja(k) - mjz,

By the mass shell//i we mean now the algebraic sub-
variety of & space

Mm=vigs={r:g*(k)=0all jc Ext}.

j& Ext. (A8)

(A9)
The restricted mass shell /i’ consists of all points & €/}
except those rare points for which each external momen-
tum—energy vector p;{k) is parallel to every other one.
The restricted mass shell/li’ is an N-dimensional analy-
tic submanifold of » space.'® Thus for each point 2/ ’
there is a mass-shell neighborhood U</)i’ of k, and a
set (Z,,---,Zy) consisting of N of the components of

the loop momenta %, such that the equation

a _ex
rank (2872 Z0) (k)) =4(n~1) (A10)
ok,
holds for all points % in U. These variables Z;,---,Z

are local analytic coordinates of the mass shell in U.
That is, U is isomorphic® to its image Z(U)C €V, The
mapping Z : €*" ~@¥ is the projection of & space onto
Z space.

Let ¢ : €° -~ C*™D denote the projection of z space
onto k space. Then

(V)= L(D), (A11)

where V=V[D] is the subvariety of C° defined by the
Landau equations (4. 2a—d) associated with the Landau
diagram D,

Some properties of Landau surfaces will now be de-
veloped in a series of lemmas. The quantities ¢, V,
Z ., & ete., occurring in these lemmas are the quan-
tities defined above. And in particular U is an open sub-
set of the restricted mass shell/fi’ that is isomorphic
to its image Z(U) in Z space. Equation (A10) holds for
all ke U, and ¢V is the set of points z such that ¢(z)
=k lies in U. The function Z(z)=Z(k, q, @) is defined by
Z(k, g, 0) =Z (k).

Lemma Al: For any point z e [VN ¢~ U] there is a set
of coefficients @j(z) and a set of coefficients B, (z) such
that forall ke (1, -, s)

N
2 oz}(Z)igz (2)=2 ﬁm(z)az”‘ (2). (A12)
jCIntiJExt 9z, m=1 3z

The sum on the left-hand side of (A12) is restricted to
the indices j < IntU Ext, and for any such j

gi(z}=p;*k, q) = m;2. (A13)
Furthermore, the a’;(z) for j < Int are given by
aj(z)=a; j<Int. (A14)

With these restrictions imposed the remaining » coeffi-
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cients ¢](z), jc Ext, and N coefficients B,(z), m=1, >
N, are uniquely defined functions of z € [V ¢tU].

Pvoof: The g;(z) in (A13) do not depend on the param-
eters «,. Neither do the Z,(z)=Z,(k). Thus if z, is any
one of the parameters a;, then (A12) holds trivially:
Both sides vanish. If z, is any component of one of the
g, then the right-hand side of (A12) vanishes because
the Z,.{z) depend only on the 2,, not the ¢;, and the left-
hand side vanishes by virtue of (A1), (A2), and (A13).
Thus (A12) holds also for these z,. Finally, consider
those cases in which the z, are components of the k,. In
these cases (A12) can be written in the form

ex N

T a0 5 g, 2 5,
J=Ext e m=1 e (A15)
where the z, of (A12) are now the 4(» — 1) components of
the n- 1 vectors %,. For fixed z= (%, ¢q, a) there are
4(n — 1) unknowns, namely the N =3n - 4 coefficients
8.(z) together with the » coefficients «]{z) for j < Ext.
Thus, for fixed z, (A15) is a set of 4(n— 1) linear equa-
tions for 4(z — 1) unknowns. These equations have a uni-
que solution provided

rank(m (k)> =4(n-1),

TG (Al6)
e

This rank condition is just (A10), which holds for all
ze ¢U. Thus (A12)—(A14) has a unique solution for
each ze[vn ¢tUl. QED

Lemma A2: For any fixed z € [V ¢ U] the unique set
of B,.(z) defined in Lemma A1l satisfies the N equations
Bn(2) =0, , N, (A17)

if and only if z € V*,

m=1,c0

Pyoof: It z lies in VN ¢~U then the unique set of §,(z)
defined in Lemma Al is defined by (A15), and the points
z < V¥ are defined by (A7). But, given (A15), condition
(A7) is equivalent to (A17).

Lemma A3: Let 0C V be any analytic submanifold of
C° that lies in V. Let Zlo: 0~ @" be the restriction of
the mapping Z(z) to the submanifold . Let z be any
point on ¢ (V= V*) " ¢-'U. Then the rank of the mapping
Z|gat z is less than N:

rank,Z | o<N. (a18)

Proof: Let z be any point on 601 (V- V)N ¢1U, Equa-
tion (A12) holds for all 2 (1, .-, s). Thus it holds also
if the 2, are replaced by a coordinate set?® (z{,--,z))
such that the coordinates (z{, - - -, z{) are local analytic
coordinates of the (f-dimensional) analytic submanifold
o at z. Every function g,(z’) vanishes identically on o,
near z’'=z'(z), since o lies in V=V(g). Thus, for every
.77

ag.
%’Z(z'):o for k=1,:-- ¢ (A19)
at z’'=2z'(z). Hence the left-hand side of (A12), with the
z, replaced by the z,, vanishes for h=1,..-,¢ at z’
=z'(z). Thus the right-hand side also vanishes there:

N
. 0

2 Bm(2") aZm (=0 for h=1,..

m=1

. oyt (A20)
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at z’=2z'(z). Lemma A2 and the requirement of this
lemma z € (V- V*) 1 ¢'U ensure that the 8,(z’) are not
all zero at 2’=2z'(z). But (A20) with some §,(z’) #0 at
z’'=2z'(z) is equivalent to the condition (A18): Each says
that the rank of the matrix (32,/9z{) at 2’=2z'(z), where
the z; are local analytic coordinates of oat z’'=2z"(2),
is less than N, QED

Any point on any analytic subvariety is either a mani-
fold point or a nonmanifold point. A manifold point of an
analytic subvariety is a point having a neighborhood such
that the restriction of the subvariety to the neighborhood
is an analytic submanifold. The remaining points of the
variety are the nonmanifold points.

Almost every point of any analytic subvariety is a
manifold point. In fact, the nonmanifold points of any
analytic subvariety are confined to an analytic subvariety
of lower dimension.? This latter subvariety can be sim-
ilarly decomposed into manifold and nonmanifold points.
By this process any analytic subvariety of C° can be de-
composed into a finite set of disjoint analytic submani-
folds o.

For algebraic subvarieties a similar but more de-
tailed result holds:

Lemma A4: Let ! be any integer. Any algebraic sub-
variety of @¢ can be decomposed into a finite set of dis-
joint analytic submanifolds o each of the form o;; =V,

- V;, where V; is an irreducible algebraic subvariety
of @, V; is a proper algebraic subvariety of V;, and
the dimensions of V; and V; satisfy

dimV,; <dimV;=dimo;;.

Pyoof: Any algebraic subvariety of @° can be decom-
posed into a finite union of irreducible algebraic sub-
varieties V;.%»® Each irreducible algebraic subvariety
V, of € has a well-defined dimension dimV;, which is
a nonnegative integer d <¢. The dimension of any alge-
braic subvariety is the maximum of the dimensions of
its irreducible components, and the following property
holds?"+®: If V; is irreducible and V, is a proper sub-
variety of V; (i.e., V;CV; but V;#V,), then dimV;
<dimV;.

Let V; be any irreducible component of any algebraic
subvariety of €. The set V; is defined as the set of
common zeros of some set of polynomials F=(f, -,
f.). Let rank,F be the rank of (f;, °--,f,) at z. Let »;
be the maximum of rank,F over z€ V;. Let

V,={z e V;:rank, F <7;}.

This set V; is a proper subset of V; and is defined by the
zeros of certain determinants, which are polynomials.
Thus V; is a proper algebraic subvariety of V;, and
hence dimV; <dimV,. Evidently rank,F=v; on 0;;, and
hence o;; is a (f - 7;)-dimensional analytic submanifold
of €¢.%% Examination of the definitions shows that
dimo;; =dimV;.

The algebraic subvariety V; can be decomposed into
its irreducible components and the same procedure ap-
plied. The dimension of V; is the maximum of the di-
mensions of its irreducible components. Thus the di-
mension decreases at each step, and the process termi-
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nates after some finite number of analytic submanifolds
o of the required form are obtained. QED

Definition: Let the measure of a subset of €V be the
real 2N-dimensional measure of this set considered as
a subset of R¥.

Lemma A5:

meas Z[(V~- V)N ¢tU]=0. (A21)

Proof: The set V is an algebraic subvariety of C°.
Thus, according to Lemma A4, it can be decomposed
into a finite set of analytic submanifolds o,

Consider any one of these submanifolds ¢C V., Sard’s
theorem, *° generalized to complex mappings, * asserts
that

meas Z[{z c o: rank,Z | <N]=0. (A22)

Lemma A3 asserts that
rank, Z|o<N atall zc oM (V= V9N ¢-U.

Thus meas Z[oN (V= V)N ¢U]=0. But V is a finite
union of sets o. Thus measZ[(V- V)N o¢1U]=0. QED

Lemma A6: The set ¢(V - V*) lies in a codimension-
one algebraic subvariety V* of /.

Proof: Chevalley’s theorem3? ensures that the image
under the algebraic mapping ¢ of a constructible set in
C° is a constructible set in €*"Y, For any ¢ a construc-
tible set in €° is a subset of € that can be constructed
as a finite union of sets 0;;=V; - V;, where V; and V;
are algebraic subvarieties of €¢, V; is irreducible, and
V, is a proper subvariety of V;. The set V- V* is con-
structible in €°. Thus ¢{(V = V") is constructible in
¢, Let 0;;,=V;~ V; be any one of the finite number
of sets from which ¢(V - V) is constructed. By repeat-
ed use of Lemma A4 one can arrange that o;; is also an
analytic submanifold of €*"™1 of dimension dimo;;
=dimV;. Since o;; lies in/j, dimo;; <dim/}i =N. I
dimo;,; =N then o;; contains a set that is isomorphic to
an open set in €V.% This set must intersect/li’, since
/M =M is a set of dimension less than N. Thus if dimo;;
=N then o;; 1/}’ must contain a set ¢’ that is isomorphic
to an open set in ¢¥. Let # be a point in ¢’, and consider
the local analytic coordinates Zy,---,Zy of//i’ina
neighborhood UC ¢’ of k. The set UN ¢’ is isomorphic
to an open set in €%, and hence must be mapped onto an
open set in @V by the mapping Z that maps U</l ” onto
Z(U)< @F. But this contradicts the conclusion of Lemma
A5 that meas Z[(V - V)N ¢7'U/] is zero. Thus dimg;;
=dimV,<N. Hence the constructible set ¢(V - V") isa
finite union of sets ¢;; = V;— V; of dimension dimoy;
=dimV; <N. Each set 0,; lies in the mass shell/li.
Hence the closure of each o;; lies in the closed set/ii.
But 0;; is dense in V; and its closure is V;. Thus
&(V - V*) lies in a finite union of irreducible algegraic
varieties V; each of which lies in/\ and has dimension
dim V; <N. Thus ¢(V - V) lies in a single algebraic
subvariety of // of dimension less than N. Any algebraic
variety of dimension less than N is contained in an alge-
braic variety of dimension N—1.%

Lewmma AT: Let V,; be any irreducible component of
V. Let V;*=V,N V*, Then ¢(V;) lies in the V* of Lemma
A6 unless V; =V7,

Joseph Coster and Henry P. Stapp 1318



Pyoof: Suppose V;#V;*. Then V;* is a proper subvari-
ety of V;, and dimV;* <dimV;. But then V; - V," is dense
in V;, and V, lies in the closure of V; - V;*. But then
#(V,) lies in the closure of ¢(V; - V;*), since the map~
ping ¢ is continuous. Thus ¢(V;) lies in the closed set
V* that contains ¢(V; - V). QED

Lemma AB: ¢(V) lies in a codimension-one algebraic
subvariety of /4 unless for some ¢ the set V coincides
with V,;* in some neighborhood U of some point Z € V;%,
and, moreover, ¢{V;*) contains almost all points of /}i.

Proof: The image ¢(V;) of any V,* is constructible
and hence either lies in an algebraic subvariety of di-
mension less than N, or contains almost all points of
the mass shell, The former sets ¢(V,”) can be combined
with V* to give an algebraic variety V¥’ of dimension
less than N. If any V,; remains then this V; must co-
incide with V.;*, by Lemma A7. But there are points on
V; that lie on no other irreducible component of V. Any
such point Z ¢ V, =V;* has a neighborhood U such that
vAU=v,nUu=vV>nU. QED

The above lemma says that ¢(V)=_L(D) lies in a co~
dimension-one algebraic subvariety of /// unless the con-
ditions (A5) that the external trajectory lines /; pass
through a common point are redundant near some point
of V; i.e., the conditions (A5) are implied by the condi-
tion (A6).

The quantities B,,(2) that occur in (A12) have a simple
but important interpretation, which is now described.
Let the py, - - -, p, be the external p;. The mass-shell
constraints ensure that at least one component of each
p; is nonzero. Near real points the energy components
p,;" are nonzero. In the following discussion it is as-
sumed that these energy components do not vanish, but
minor changes would allow the other cases to be
encompassed,

For each point #&/h’ the external p;{k) are not all
parallel. Thus for some j <#n the vector p; is not paral-
lel to p,. Let the labelling be such that p,_; is not paral-
lel to p,. Then for some space component, which is
taken to be the p =3 component,

pi-l/pg-l #pns/pn0°

If the labels are arranged in this way, then the set
(Zy, -+, Zy) can be taken to be the set consisting of all
of the space components of all of the n -1 vectors %,

except for k3 ;. For with this choice the quantity

F:] -B,Z ) n=2
det (—%;—'") =2, = prap’) 1 ,°
‘e J=

(A23)

(A24)

is nonzero, by virtue of condition (A23), and our con-
vention about p,°. This same condition also ensures
that the projections onto (x°, %) space of the external
trajectory lines /,; and [, of the space—time represen-
tation of the point z of ¥V must intersect at some point
(x° ¥°). Let the origin of time be chosen so that 7=%°
=0. Let the origin of space be the point at which the
trajectory line of particle » intersects the plane t=x"
=0. Then for each index j < Ext let x; be the 3-vector
from the origin of space to the point at which the trajec-
tory line /; of external particle j intersects the plane
t=0.
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In general, each of the three components x;* (u
=1, 2, 3) of each vector x; is a complex number. How-
ever, the components ¥}, x2, x72 and x3, all vanish,
by virtue of the choice of origin. The remaining 3n - 4
coordinates x,* (u=1, 2, 3) are, apart from a factor of
two, the coefficients 8,(2). In particular, if Z,, =k,
=Phimy, then

Bul2) = 26280 (2), (A25)

where the argument z of x,*(z) signifies that x,* depends
on the point z € V, since, of course, the space—time
representation of D depends on z € V. For each j< Ext
the parameter @/(z) is the complex number such that

A; = ajp; is the space—~time vector to the point (0, x,)
from the point v; on the external trajectory j where this
trajectory joins D, These determinations of the a;(z)
and of the 8,(z) ensure that (A15), and hence (A12),
holds.

The identification (A25) means that the N-vector B(z)
with components B8,(z), is determined in a simple way
by the locations of the external trajectories I; of the
space—time representation corresponding to z < V. This
vector B(z) is zero, as noted in Lemma A2, if and only
if the external trajectory lines all pass through a com-
mon point,

The N-vector B(z) discussed above is also essentially
the normal to the Landau surface at the image of z:

Lemma A9Q: Suppose ¢ is an analytic submanifold of
@° that lies in V. Suppose z is a point of o (V= V%)
M ¢-U such that the restriction Z | ¢ of the mapping
Z(z) to ¢ has rank N—1 at z. [Rank >N -1 is excluded
by (A18)]. Then there is a o-neighborhood of z, U,
CloN (V=N ¢V, such that Z(U,) is an analytic sub-
manifold of ¢V of dimension N~ 1. This N -1 dimen-
sional analytic submanifold Z(U,) lies in L(D). The
normal to Z(U,) at Z(z) is well defined and nonzero, and
it is equal to 8(z), apart from a nonzero scale factor.

Pyoof: The rank of Zlo on o (V= V¥ 62U is, by
virtue of Lemma A3, at most N- 1. Since the rank can
decrease only on the zeros of certain determinants the
rank must be N-1 in some o-neighborhood of z. Thus
there is a o~neighborhood of z, U, C [ofi (V= V) ¢V,
such that Z(U,) is an (N - 1)-dimensional analytic sub-
manifold of €'.% The normal to any codimension-one
analytic submanifold of €V is well defined and nonzero.
Let (2”,---, 2! be a set of local analytic coordinates®
such that z{, - -+, z/ are local coordinates of o near the
point z. Then the set of / N-vectors 7", with h=1,<«-,!/
whose components are 7,'=23Z,/3z,(z) span an (N- 1)~
dimensional subspace of €V, since the rank of Zio at
z is N~ 1, This (N - 1)-dimensional subspace of €' is
the (N~ 1)-dimensional tangent space to Z(U,) at z. But
then (A20) is the condition that the N-vector B(z) be a
nonzero multiple of the normal to Z(U,) at z. QED

3

This result that the positions of the external trajec-
tory lines /; determine the normal to the Landau surface
was derived earlier'® by another method, for positive-
a surfaces. That earlier method involves nonalgebraic
functions that develop singularities when any of the in-
ternal «; vanish. The present purely algebraic method
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extends the earlier results to the points z where one or
more &; =0,

Definitions: R is a real RC V; ¢z =¢/R; and L(D°)
= ¢>R(V) =¢(R).

Lemma A10: Let D be any Landau diagram, and let
V be the corresponding variety in €°, Suppose ¢x(V%) is
confined to a codimension-two algebraic subvariety of
/M. Then there is a codimension-two algebraic subvariety
W(D) of /i with the following four properties:

(W)/M=/M" lies in W(D).

(2) If z is a real point of R that is mapped by ¢ into
L(D°) — W(D), and if »(z) is the space—time representa-
tion of D that corresponds to z, then the external lines
1, of 7(z) do not all intersect at a common point; i. e.,

B(z)#0.

(3) The set L(D°) — W(D) is either empty or a codimen-
sion-one analytic submanifold of /| / that is confined to a
codimension-one algebraic subvariety of /.

(4) I z and 2z’ are two points of R that correspond to
the same point k e L(D°) — W(D), then »=#(z) and »’
=y(z’) are externally similar, i.e., there is a positive
or negative scale change and an overall space—time
translation that brings the external trajectory lines ]
of »' into coincidence with the corresponding lines /; of
¥,

Pyoof: The required W(D) is

W(D) = Wi(D)U Wo(D)U Wy(D)U W, (D), (A26)

where W (D) is/l =/i’; W,(D) is the codimension-two
algebraic subvariety of /| that by hypothesis contains

¢ r(V*); W4(D) is the union of the algebraic subvarieties
V; and V; of dimension less than N~ 1 that arise in the
decompotition, via the Chevalley theorem and Lemma
A4, of the constructible set ¢(V ~ V*) into analytic sub-
manifolds o;;=V;~V;; and W,(D) is the closure of the
image in/} of the set of points z € R such that rank,¢ | o,
<N-1. Here 0, is the analytic submanifold ¢;;CV,;CV
that arises in the decomposition of V by means of Lem-
ma A4, and that contains 2z, and ¢ |0, is the restriction
of ¢ to o,.

The set W,(D) is an algebraic subvariety of/} of di-
mension less than N - 2, Its presence in W(D) ensures
property (1).

The set W,(D) is a codimension-two algebraic sub-
variety of //i by hypothesis. Its presence in W ensures
property (2), because the conditions that z be real point
of V and that the external trajectories I, of 7{z) have a
common point is precisely the condition that z belong
also to V7,

The set W,(D) is a finite union of algebraic subvari-
eties of /// of dimension less than N—1, and is thus an
algebraic subvariety of//i of dimension less than N-1,
The remaining sets V; and 0;; in the decomposition of
¢(V - V*) have dimension N -1, by virtue of Lemma A6,
and they include all points of L(D%) - W(D), since (V%)
lies in W(D).

The set W,(D) is

W,(D) = closure ¢{z € R : rank,¢ lo, <N =1}, (A27)
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The set{z € R:rank,¢ |0, <N-1} is a constructible set,
and hence so, by virtue of the Chevalley theorem, 3 ig
its image ¢{z e R:rank,¢ 10, <N-1} in/i. But argu-
ments analogous to those of Lemma A5 show that the
image under ¢ of the set{z : rank,¢ |0, <N -1} cannot
contain any set 0;;=V;- V; of dimension N~ 1. Hence
the closure of qs{z @R :rank,¢ |0, <N-=1} is a finite union
of sets V, of dimV; <N~ 1. Thus W,(D) is an algebraic
subvariety of /i of dimension less than N -1,

_ Each point ke L(D°) - W(D) is a point near which

L(D%} is a codimension-one analytic submanifold of /i,

by property (3). Hence the normal to L(D°) at any point
of L(D°) - W(D) is well defined. On the other hand, every
point z =R that maps to any point k<« L(D°) - W(D) is a
point z € R where rank,¢ |0, =N -1, Thus, by virtue of
Lemma A9, the vector B(z) associated with any z ¢ R
that maps to any k2 € L{D°) - W(D) is a multiple of the
well-defined normal to L(D°) at k. Therefore, all of the
vectors B(z) that are associated in this way with any
given k c £{D% — W(D) are nonzero multiples of each
other. Since all of the representations 7(z) that generate
any fixed point % ¢ L(D°) have their corresponding ex-
ternal trajectory lines parallel, this equality (up to
scale change) of the N-vectors (z) guarantees that these
representations #(z) are all externally similar. Thus
property (4) holds. QED

The results obtained above refer to a single Landau
surface L{D), Let B be any bubble diagram and let
FB(E) be the corresponding bubble-diagram function
[see Eq. (3.4)]. Let L(B) be

L(B)= U L(D%).
DB

The structure theorem says that the singularities of
FB(k) (at real k) are confined to L(B) [see (4.6)].

(A28)

For any given B there is an infinite set of D°C B. One
trivial way in which this set becomes infinite is illustrat-
ed in Fig. Al. As n runs from 2 to infinity the diagram
in this figure generates an infinite set of diagrams. If
the multiple loops in all these diagrams are formed
from a single fixed pair of particles, and if the signs
o; are all plus, or are all minus, then each of these
diagrams gives the same surface L(D°), These D° are
examples of nonbasic diagrams, which can, as we shall
see, be ignored.

A nonbasic diagram D° is a diagram that has a redu-
cible part. A reducible part is a part R such that: (1)
All the lines of R have the same sign + or —; (2) in every
space—time representation of D° all the lines of R lie
on one common space—time line; and (3) some vertex
of D° is connected only to lines of R.

Properties (1) and (2) ensure that all the vertices of
R that satisfy (3) can be shifted along the common

-~ ~N

FIG. A7, A typical nonbasic diagram.
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space—time line, and brought up against vertices that
do not satisfy (3). By merging these coincident vertices
one can construct for each nonbasic D° a basic Dy’ with
the property that each representation » of D° is external-
ly equivalent to some representation »’ of D,’,

A contractible part of 2 D°C B must be a part of the
diagram D; or Dj that replaces some plus or a minus
bubble & of B. Otherwise some sign would be a “sign”

0; =+, hence not a well-defined sign plus or minus.
Thus the restriction of D’ C B to basic diagrams is equi-
valent to the restriction of the constituent diagrams D}
and D; to basic diagrams D;, and Dj,.

Since every representation 7 of a nonbasic diagram
D’ is externally equivalent to a representation r of a
basic diagram D,° one may write

L(B)= U L(D%, (A29)

Dg®CB

where D° is a basic diagram.

Lemma Al1: Let R be any bounded region in % space.
Then only a finite set of basic D; gives surfaces L{Dj)
that intersect 2. And only a finite set of basic Dj gives
surfaces L(D;) that intersectR.

Proof: This was proved in Ref. 35.

Remark: Because of the mass-shell and positive-
energy (p,’> 0) constraints a regionR in % space is
bounded if and only if the total energy of the process
139, is bounded.

Lemma Al12: Let R be any bounded region in # space.
Let B be any fixed bubble diagram. Then only a finite
number of basic D;?C B give surfaces L(D°) that inter-
sectX.

Proof: The flow-diagram ordering condition of Sec.
VI. A, together with the conservation law condition
(4. 2b), and the positivity energy condition (4. 2g), en-
sures that the total energy entering any bubble b of B
is no greater than the total energy entering B. That is,
a bound in % space implies a bound on the energy enter-
ing each individual bubble. But the Landau equations
corresponding to D;° cannot be satisfied unless the
Landau equations for each of the constituent parts D;,
and D;,; can be satisfied. Thus the bound, mentioned
above, on the energy entering each bubble &, together
with Lemma A11, implies that for each b the corre-
sponding Dj; or Dj; must be one of a certain finite set
of diagrams. However, only a finite set of diagrams
D, can be constructed from the finite sets of Df;’s in-
serted in all possible ways into the finite set of bubbles
b of B,

Definitions:
D,°={D°:D°C Be A%}, (a3
D=V D2C, (A31)
G,n
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Let R be a region in k space and let N;(R) be the number
of basic Dg° /) such that L{DS)NR #¢.

Lemma A13: If R is bounded then N,(R) is finite.

Proof: The number of pairs (G, n) is finite. For each
(G, 1) the set 3,° is constructed so that in any bounded
region R only a finite set of B</A,¢ satisfy the conser-
vation law, positive energy, and mass-shell conditions
associated with the explicit lines of B. These conditions
are included among the Landau equations associated
with the diagrams D,°C B. Thus only a finite set of B
€B,% can have D;°C B that give surfaces L(D,% that in-
tersect any bounded R . But then the finiteness of N3(R)
follows from Lemma Al2, QED

Definition: D¢=D,fUD?C.

Lemma Al4: Suppose for each D;°</) that there is
a real region R C V,° such that ¢(Rs;°N V*) is confined
to a corresponding codimension-two algebraic subvari-
ety of //i. Then there is a codimension-two algebraic
subvariety W of // such that

(/M =/’ lies in W;
(2) if 2 lies in U R and 7=7(2)

corresponds to a point # £ W then the external trajectory

lines I; of # do not all pass through a common point;

(3) the set U ¢(R,") = W is either empty or a codimen-
sion-one analytic submanifold of /i’ that is confined to
a codimension-one algebraic subvariety of /.

(4) if z and 2z’ lie in U R, and if both z and z’ corre-
spond to the same point & W, then »=#(z) and z' =#(z")
are externally similar.

Pyoof: This result follows immediately from Lemma
A10 and A13, for the set

w= U

W(Dy?)
Dg ue[) G

restricted to any bounded region is a finite union of
algebraic varieties. Hence W is an algebraic variety.

Lemma A15: Let L;° be the set of points % generated
by at least two externally similar but not externally
equivalent representations of diagrams Dg°c/) . [The
pertinent definitions lie between Egs. (6, 16) and (6.17). ]
Let L;” be the closure of the union of the codimension-
one analytic submanifolds contained in Lg°, Then Lg°
— Lg” lies in a codimension-two algebraic subvariety.

Proof: It is sufficient to prove that L, is construe-
tible, for in this case L;° is a finite union analytic sub-
manifold of the form ¢;;=V,; - V; where V, and V; are
algebraic varieties and V; is a proper subvariety of V.
The set L;® is then the closure of the union of the g;; of
codimension-zero or codimension-one, and LGS— LGE
is contained in the finite union of the codimension-two-
or-more algebraic varieties V; into which L:® is
decomposed.

To show that L;° is constructible it is sufficient, by
virtue of the Chevalley theorem, to show that it is the
image under an algebraic mapping of a constructible
set. It is enough to deal with %2 space restricted to an
arbitrarily large sphere centered at the origin, because
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the result to be established is that Lg® - Ls® restricted
to every such sphere lies in a codimension-two algebraic
subvariety. But then, by virtue of Lemma A13, it is
sufficient to consider only a finite set of D;°C/l . Let
I'=7I%° be the tensor product of the spaces I'y° of vari-
ables &, ¢, o, and v, associated with these D,°. Here

k is the set of external 4-momenta, ¢ is the set of inter-
nal 4-momenta, « is the set of @ parameters, and v is
the set of 4-vectors that specify the positions of the ver~
tices of the space—time representations of D,°. The
pre-image of LGS in I’ is a constructible set. One sees
this by considering in turn each pair (D%, D;°") of D”’s
in the finite set, and noting that the condition for the
coincidence of the two external trajectory lines 7, and

I, connected to external line ¢ in D,° and D", respec-
tively, is the condition that the difference 4,=v;,,,

- U;m of the positions of the external vertices connected
to e in D,° and D be parallel to p,. This condition

can be expressed algebraically by the vanishing of the
Gram determinant of the two vectors 4, and p,. Im-
posing this requirement for each e, and then deleting
the set where all A, =0 gives a constructible set. The
union of these constructible sets over the finite set of
pairs (D%, D;°") gives a constructible set whose projec-
tion onto % space is L;°. Then the Chevalley theorem
implies that Lg° is constructible. QED

The conclusions (a), (b), and (¢) listed below Eq.
(6.19) in the main text follow from Lemmas Al4 and
A15. The sets Rs°C V,° of Lemma Al4 are taken to be
the sets of real points of V;° that do not generate points
% of the exceptional set L;Z. Then, by virtue of Lemma
A15, points ke U ¢{R,°) generated by pairs of externally
similar representations that are not externally equiva-
lent are confined to some codimension-two algebraic
subvariety W'. This subvariety W' contains U ¢(R,®
{1 V5%, which ensures the condition of Lemma A14, The
choice W, = WU W' ensures that conclusion (b} follows
from consequence (4) of Lemma A14, to the extent that
the diagrams D° in condition (b) are restricted to basic
diagrams D,°, Moreover, conditions (a) and (c) follow
from consequences (3) and (2), in this case. However,
if the properties (a), (b), and (¢) hold with the D° re-
stricted to basic diagrams D;° then these three proper-
ties also hold without this restriction. For each repre-
sentation of a nonbasic D° is associated with a unique
externally equivalent representation of a basic diagram
D’ that corresponds to the same point k. The fact that
external equivalence is an equivalence relation then ex-
tends the properties (a), (b), and (c) restricted to the
set of basic diagrams Dy /) to the set of all D° c/)g.

APPENDIX B: COMBINATORIC IDENTITIES
Let H be any finite set. Suppose that

Ay= 2. (- pr#npH’ (B1)
HCCH
and
B = 2 (=1, (B2)
HeoH

where the sums run over all distinct subsets H' of H
and H” of H’, respectively, and n(F) is the number of
elements of F. Substitution of (B2) into (B1) gives

1322

Ay :H,%HXHH"CH'Q (B3)
where
Xypge= 20 (==t (B4)
HnCHICH

Clearly Xy,»=1. Comparison of the expression for the
remaining quantities Xy, ~ with the binomial expansion
of (1— 1) =nti") ghows that X is the unit matrix:

1 for H=H",

0 for H+H?”, (BS)

XHH" = GHH”E{

This result implies (2.5). It also implies that the quan-
tities Ty defined for every G and H by

Ty’ = 2 (= )" Tye. (B6)
¢'Ce
satisfy
Tyge= 2 (=107, (B7)
H*CH*
The substitution of (B7), with H=¢, into (B6) gives
TC= 25 (=)™ 3 (= prEmTH”
G'CG He(CHG?
= E (... 1)"(0') Z} (_ l)n(G") 2 (_ 1),,(HI)TG:,H,
GG GnCG H'CH
=2, 3 A{=1)MCen(Cy (L Yt G
GnGnCEICe HeH
= D (= )rHHToH, (B8)
H'CH

where (B5) is used to get the last line. This result is
(4.17b). The result (4.17c) follows from repeated appli-
cation of the identity

Tu® =Ty + Ty, (B9)
which follows from (B6), which is (4.17a), via the
equation

7%= 20 (=1 Tun+ 22 (= DO T,

G'Co GrCe
= THG — THkGe (Blo)
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By use of a finite volume, lattice approximation, we set up an approximation to the analytic continuation of

a polynomial, self-interacting boson quantum field theory from Minkowski space to Euclidean space. The
infinite volume limit for various boundary conditions is shown to exist and to be asymptotic to the perturbation
expansion in the coupling constant g at g =0. For g:¢*:, theory we prove mass renormalizability and show
how, by use of Nelson’s reconstruction theorem, the corresponding Minkowski space quantum field theory

can be obtained. We discuss, at least for d> 4, how statistical mechanical techniques, used to analyze the Ising
model in the critical region just above the critical temperature, can be used to compute the properties of

quantum field theory.

1. INTRODUCTION AND SUMMARY

Since the introduction of quantum field theory, there
has remained a question as to whether, and under what
circumstances, it was a real theory. Did it make
precise predictions for physical phenomena, and if so
how could one calculate them. In the case of quantum
electrodynamics, the electric charge, or coupling con-
stant, is sufficiently small so that a perturbation ex-
pansion in the coupling constant gives sufficient ac-
curacy for experimental purposes using only a few
terms. The theoretical question of whether the theory
defines a unique, precise result however has not been
resolved. The problem is more severe and of greater
practical importance in the case of the strong interac-
tions where the coupling constant is larger and ac-
curacy adequate for experimental purposes cannot be
obtained from the first few terms of the invariant
perturbation series. Indeed, as the series is likely di-
vergent, simple series summation is of limited value
in obtaining accurate answers.

A substantial amount of work has been done on this
problem in the case of two-dimensional systems (one
space and one time dimension). The reader is referred
to Glimm and Jaffe.' Dimock® has established that for
self-interacting Boson theory in two dimensions the
perturbation series in the coupling constant is asymp-
totic to an infinitely differentiable theory, at least over
some small interval in the coupling constant. However,
the complete resolution of the theoretical problem has
not yet been given even in two dimensions, much less
the resolution of the practical question.

A fundamental advance was made by Nelson.*® He was
able to show that a quantum field theory could be con-
structed from a simpler object. Quantum field theories
are related to the properties of Minkowski space where
the distance between two points is given by ds®=—dx?
—dy? - dz% + dif instead of the usual Euclidean formula
with all plus signs. (The velocity of light is taken to be
unity.) Schwinger, * generalizing a technique used pre-
viously in perturbation theory, studied the analytic
continuation of the vacuum expectation values to imagi-
nary times. When the continuation is carried out, the
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characteristic symmetry group becomes the orthogonal
group in four-dimensional, Euclidean space rather than
the Lorentz group in Minkowski space. Symanzik® then
made the important discovery, using multiple Wiener
integrals of functionals, that, at least for certain model
systems described by Lagrangians, Euclidean, Boson,
quantum field theory was mathematically very similar
to a classical statistical mechanical system. Nelson®
isolated the important Markov property (roughly, if one
has complete information about a system on the bound-
ary of a region no additional information about the in-
terior is gained by a further knowledge of the exterior)
and showed how to reconstruct a quantum field theory
from a Euclidean field theory with this property. It is
not however particularly easy to give examples of Mar-
kov fields. Nelson® has, however, shown that the free
fields of mass m in d dimensions have this property
and hence lead by way of his reconstruction theorem to
free field, Boson, quantum field theory.

If a Euclidean field theory satisfies the properties
required by Nelson® or more generally by Osterwalder
and Schrader” then a quantum field theory may be con-
structed from it. Thus their work has reduced the
problem of existence and perhaps also computation to
the study of the Euclidean problem. The fundamental
starting point is the Feynman-Kac formula® for the
vacuum expectation value

(R, exp(~ tH)S2,) = E(exp(~ gV)),

where H is d — 1 dimensional, { is a pseudo-time, and

V is the d -dimensional interaction. The left-hand side
(Fock-space expression) has no time-ordering operator
because that operator acts only on the real part of the
times which are all zero. The right-hand side is the
expectation value with respect to a Markovian, Gaussian
random process. The fundamental Feynman—Kac formu-
la has been extended by Osterwalder and Schrader® to
boson—fermion models and, though technically more
complex, should serve as the basis for an extension of
the present work to such systems.

A logical next step in an effort to establish a compu-
table quantum field theory is to introduce a partition of
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space into cells and to consider only one field variable
per cell. One then has the analogy to a crystal lattice.
Unknown to us at the beginning of our investigation, a
similar approximation was extensively studied by
Guerra, Rosen, and Simon™ for the case of two space-
time dimensions. Once the lattice approximation has
been introduced over a finite volume there are two
limits to be taken. These limits are (i) the volume goes
to infinity and (ii) the lattice spacing goes to zero. The
latter limit is equivalent to the usual ultraviolet cutoff
going to infinity. Our approach is first to take the
thermodynamic limit, that is, the volume goes to in-
finity, and then to let the lattice spacing go to zero. We
will work in an arbitrary (d = 2) number of dimensions.
The approach of Guerra, Rosen, and Simon!° differs
from ours fundamentally in that they contemplate first
taking the lattice spacing to zero and then the volume to
infinity.

Our work in this paper is concerned with self-interac-
ting, Boson field theory. Aside from g: ¢*: , field
theory, which is equivalent to changing the mass in free
field theory and has no scattering, our most complete
results are for g: ¢* Yy field theory. We discuss these
results in Section 7. Since mass renormalization sim-
ply means adjusting a parameter of the underlying
theory, the bare mass, so that the mass predicted by
the theory will equal the experimental mass, a theory
will be mass renormalizable if that condition can be
met. We show (with a qualification) for g: ¢*:, theory
that the bare mass can be adjusted so that the mass pre-
dicted ranges over 0 <m < . Furthermore, for the
lattice spacing A >0 the mass is a monotonic, uniformly
continuous (in the volume) function of the bare mass for
all values of the coupling constant. Consequently, the
mass renormalization can be carried out. We further
show that the cluster property, i.e., exponential decay
of the field correlations at long distances, holds. Fur-
thermore, the Schwinger functions and the free energy
(the fundamental objects of the theory) are continuous
functions of the coupling constant for all g, and are de-
fined in a nonzero region by the asymptotic, perturbation
series at g=0, at least if the lattice spacing A > 0. The
basic Wightman functions, which are the fundamental
objects of axiomatic field theory, are constructed by
analytic continuation of the Schwinger functions by means
of Nelson’s reconstruction theorem ® or Osterwalder
and Schrader’s” results.

An outline of our procedures is as follows: In the
second section we set up on a finite volume with a finite
lattice spacing a set of Gaussian random fields which
are coupled to each other by the d-dimensional differ-
ence approximation to the ordinary free field Lagrangian

In the third section we define the normal ordered
product on a discrete lattice.

In the fourth section we show the existence, by the
use of a number of inequalities known in statistical
mechanics, of the infinite volume limit at fixed lattice
spacing. These limits depend explicitly on the general,
semibounded polynomial interaction assumed, and on
the type of boundary conditions imposed. We show gen-
erally that certain inequalities hold between results for
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different types of boundary conditions, and for some
cases we can establish equality.

In the fifth section we show the relation of the limiting
functions to the perturbation series in the coupling con-
stant. By means of generalized Padé approximants and
the method of Villani’s limit theorem we can construct
from the volume-dependent perturbation series alone
the infinite volume limit of the free energy and the
Schwinger functions. These limits have the properties
of being continuous for all real, nonnegative g, and
strongly asymptotic to the coupling constant expansion
in an angular wedge of angle at least 7 at g=0, for the
lattice spacing greater than zero.

In the sixth section we discuss mass renormalization.
In this section we bring out the relation of field theory
to critical phenomena. The mass in field theory is
directly analogous to the inverse range of correlation in
a statistical mechanical lattice system. Since we seek
a theory where the lattice spacing goes to zero, and
physical phenomena happen at finite separation, then
£/A—~ o, where £ is the correlation length. In other
words, we must be approaching the critical point as
the lattice spacing tends to zero. The mass renormali-
zation condition adjusts the bare mass so that the sys-
tem behaves as if, in statistical mechanical language,
it were at a temperature just above the critical tem-
perature, and tending to the critical temperature as the
lattice spacing goes to zero. We show that the renor-
malized mass has certain monotonicity properties as
a function of the bare mass, but have not proved, for
the general models, continuity which is needed to com-
plete the proof of mass renormalizability. As we re-
marked above, this result is proven for the special
case g:¢*:, in the seventh section.

In the eignth section we discuss the computability
particularly for the g: ¢*:, theory. We find that what is
needed is to compute the asymptotic behavior in the
critical region. The method of high-temperature ex-
pansions, such as employed by Fisher and Burford!® in
their study of the spin-spin correlation functions in the
critical region, would seem adequate, at least for
d =4, where the limit of the mass and (d > 4) coupling-
constant renormalized, g: ¢* ;s theory is a continuous-
spin Ising model.

Finally, in the appendixes we give some additional
technical material. In Appendix A, we review, and ex-
tend, the relevant inequalities of statistical mechanics.
In Appendix B, we give a brief review and slightly ex-
tend the known results on generalized Padé approxi-
mants as they are particularly relevant to the Padé-
Borel summation method. In Appendix C we give the
proof of the continuity of the renormalized mass in
g: ! :, theory. In Appendix D we discuss Nelson’s re-
construction theorem and how it relates to our results
for g: ¢*:, theory.

2. LATTICE FIELD THEORY

Nelson® has shown under a mild assumption that if one
has a Markov, random field defined over a d-dimen-
sional, Euclidean space, one may construct from it a
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field theory which satisfies all the Wightman axioms
for a relativistic field theory in Minkowski space. The
problems of noncommuting operators are replaced by
the problems of correlated random variables. The ex-
pectation values with respect to the random field are
related to the expectation values in Fock space by the
Feynman-Kac formula

E(exp(~ gV))=(8,, exp(- tH),) (2.1)

where H is d -1 dimensional, { is a pseudo-time, £,

is the vacuum state, and V is the d-dimensional interac-
tion. It is this formula which is fundamental to our ap-
proach. We seek to establish the existence of such a
Markov, random field. Nelson® has shown this can be
done for the free field. As motivation for our approach,
we start on this study in such a way that many of the
techniques of rigorous statistical mechanics can be
used, and we keep in mind the type of Euclidean-space
properties that Osterwalder and Schrader’ found were
necessary and sufficient to insure the existence of a
relativistic field theory.

Let us now consider a box in d-dimensional, Euclidean
space with each edge of length L, and divide it into N
intervals in each direction. We have N¢ cells. Let us
assign a field variable ¢ to each cell. The subscript r
is a d-dimensional vector which takes on the possible
values 0-L/N, 1-L/N, ..., (N=-1)- L/N for each of its
d components. It will be convenient to use the notation
A =L/N for the lattice spacing between the cells’ cen-
ters of our box. It is also convenient to introduce the
momentum transformed variables

gy ={8)2; exp(2mik - i, (2.2)
r

for k on a lattice of spacing L' in each direction, and

centered at the origin. The reverse transformation is

¢.=(L)4); exp(—2mik- r)g, (2.3)
X

by the standard Fourier transform theory. Next we in-
troduce an action function for a free field of mass .
It is
o5 (2161 Prs — ) 2.2
Aty L T mgdy ).
r

A, = (2.4)

[

The summation over the set {6} is a sum over half of the
nearest-neighbor cells of the cell r. The set {5}
={(a,0,...,0), (0,4,...,0), ..., (0,0,...,4A)}, ex-
cept for r on the boundaries of the box where the term
of the summation corresponding to § =7, the vector nor-
mal to the hypersurface of the box is missing as ¢,,,
lies outside the box. Formula (2. 4) is the discrete
analog of the usual field theory formula

A, = f L di=} f dt ax (Vo) +m ¢?]. (2.5)
In terms of ¢, of (2. 2) we may rewrite (2. 4} as
A, = L0705 13 [4a® sin®(nk - 8) |+ mB) gy g,
t (6}
(2.6)

- %Ad-z%\ (d)l‘v(l-N)'ﬂ - d)r)z*

where the last summation is over the “upper” surfaces.
that is those with coordinates (L = A, 7,, .... 7)),
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(ry, L=4, ..., 7)), ..., (¥, 75 ..., L —A), where

0 <7,<L~Aare arbitrary. Edge and corner points will
appear more than once. This action function A, corre-
sponds to free boundary conditions.

In addition to Eq. (2.4), we will find it desirable to de-
fine a corresponding A for periodic boundary conditions.
The formula is identical to (2. 4) except that now the
difference terms on the boundary, instead of being
omitted when they extend to a cell outside the box, are
defined by the periodic condition

Bran = Pro aayim
which is in the box. In terms of the g, we have the action
function A for periodic boundary condictions diagonalized
as

A= L'dZ:) {25 (442 sin®(nk - 8) ]+ mZ}gyq.,

{s) (2.7)

[

as the surface term in (2. 6) vanishes by definition. To
make contact with the usual field theory form we note
that for A very small and k| =0(1) Eq. (2.7) goes to

A=} [t k@n? k|2 +m2) g, q., (2.8)
which is the familiar type.

While it would be quite curious if the final theory were
to depend on which boundary conditions we impose, we
need to consider several types in order to accomplish
our demonstrations. One further type of boundary con-
ditions we have found useful are the Dirichlet boundary
conditions. These boundary conditions are obtained by
adding a complete additional layer of cells over the en-
tire surface of the box which interact as in (2. 4); how-
ever, the field variables in these cells are held fixed
at ¢ = 0. The corresponding action function for Dirichlet
boundary conditions may be put in a symmetrical form
by expanding the squared difference term in (2. 4) as ex-
tended, and rearranging the sum. We obtain for the
Dirichlet boundary conditions an action function

A =3a% 37 |- 247 % (GpDpeg )+ (M2 + 2dAT2) 2],
r
(2.9)

where any ¢, , outside the box is set to zero. The
various action functions are related by

A =A+AT2 b o
S
A=A _+ %Ad'z? (¢p= Dra -N)n)zv

A=A+ 347257 (¢2+ 0% 1 yom) (2.10)
S .

We are now in a position to introduce our discrete
random fields in terms of the following unnormalized
distribution functions

d“w - exp(—A+) I;I dér’

du =exp(— AT do,, (2.11)
T
du_=exp(— A1 do,,
r
which correspond to free. periodic, and Dirichlet
George A. Baker, Jr. 1326



boundary conditions, respectively. Corresponding to
these measures we introduce the unnormalized ex-
pectation values

E(f)=] fau,, E(f)= [ fau_,

(2.12)

E(f)=/[ fdu,

and weakly normalized expectation values

E(f)=E,(f)F*, E(f)=E(f) F**, (2.13)

E(f)=E(f)F*,

where from (2. '7) we define the normalizing factor per
unit hypervolume as

Ae\a7/2 1/2a - 2 2
F:<2_7T) exp{z fl/ZA + J di Inlmf + 44

x (;' sin?(nk - 8)]}. (2.14)
These expectation values have the property that
lim (£,(1)}2 = lim [E1)}™= (2.15)

The formula for F was derived by computing the ex-
pected value of unity using (2. 7), (2.11), and (2. 12),
and by showing that the surface contributions for the
other boundary conditions do not affect the result (2. 15)
provided A>0,

3. NORMAL ORDERED PRODUCT ON A
DISCRETE LATTICE

One of the things which makes field theory technically
difficult to treat is the occurrence of the normal-
ordered products. The normal-ordered product differs
from an ordinary product in that all the creation opera-
tors are placed to the left of all the annihilation opera-
tors. These products can, by means of their commuta-
tion relations be re-expressed in terms of ordinary
products. Our analysis follows that of Nelson, 2
Glimm, ** and Glimm and Jaffe.'* We will consider
periodic boundary conditions. The action defined by
Eg. (2.7) is plainly by (2. 10) a positive-definite (2> 0)
quadratic form in the variables ¢, which can be taken
as symmetric. For large values of L and small A, as
we see in (2. 7) the N? eigenvectors are combinations of
g, and ¢_, and the N? eigenvalues are the coefficients of
9 d-x-

In order to associate Fock space operators with this
discrete momentum theory'® we introduce a creation
operator, @*(k), and an annihilation operator, a(k), for
each k of (2.2). These operators satisfy the usual
Boson commutation relations

la(k), a*(k’)]=L%, ..,
lak), alk’)]=
{a*(k), a*(k’}]=0, (3.1)

where 0, ; is the Kronecker delta which is 1 if ¢ =8

and zero otherwise. Now using the notation
w,=4{m2+ 442 Y] sin’(vk - 8)], (3.2)
(s}
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the usual second quantization formula

= (2w, *alk) + a*(- k)], (3.3)

and Eq. (2.3), we obtain the corresponding Fock space
operator

&(r)=&7(r) + @*(r), (3.4)
where
&-(r)=L"13 [exp(2mik - r) alk)/(2w,)*'?], (3.5)

k
o' (r)=L"13" [exp(2mik - ) a*(— K) /(2w ) /3]
k
Now, by definition, the normal ordered product is

®H(r): = é (f) [@*(r)} (& (r)},

(3.6)

where (fj) is the binomial coefficient. As an example of
the reduction by means of the commutation relations,
we consider p =2,

$(r)=[&*(r)F + &*(r) d(r) + &7(r) d*(r) + &7(r)?,

=:8%(r): + &°(r) d7(r) - &(r) &7(r). (3.7

Using (3. 5) and (3. 1) we may evaluate the commutator
in (3.7) as

H

?[exp(zk -k)-r) L/ w,], (3.8)

l

b‘lr—k

=2 [m%+ 447 3 sin®(nk - 6))7,
3 {8}

independent of r. If we reduce out all the commutators
in this way, we obtain by induction

[p__AZ] p]

PHr)= ? & W 279CI 922 (r): (3.9)
or inverting this equation
» ter2l p! oy
1 (1) = Z (~1¥ 2T 29 C1 ®72(r). (3.10)

Thus the normal ordered operators for periodic bound-
ary conditions are polynomials in the ordinary &’s with
coefficients depending the commutator C, and independent
of r.

The first limit we will be concerned with in our con-
struction of a Markov, random field from which to con-
struct a self-interacting Boson field theory will be the
“thermodynamic” limit, L — =, with the lattice spacing
A fixed. In this limit, (3. 8) goes over directly to

1/2a
C=limC, f ot z =z a i 2
Lo -1/2a Mo+ 4ATF (g sin*(7k - )

(3.11)
as in this limit the spacing between the discrete k’s goes
to zero and they fill the hypercube indicated by (3. 11).
Since for a fixed value of A and {$(r)], we can by
choosing L large enough make : ®*(r): arbitrarily close
to that obtained by substituting C for C; in (3. 10), and
since it will be convenient later on to have an interac-
tion which is independent of the box size, we define the
random field equivalent normal ordered product as
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tp/2al p1 )
(@i 9 (=1) STT 27007 or.

B=2 (3.12)

For future reference, we note that for & very small,

C o a%d d>2,
Cx-1na, d=2,
C finite, a<2, (3.13)

gives the asymptotic behavior of the constant C as the
ultraviolet cutoff (A 0) is removed. This potential in-
finity must be borne in mind during subsequent analysis.

4. THE INFINITE VOLUME LIMIT

We have introduced in the previous two sections the
free field action and the quantum field theory normal
ordered product in the context of discrete random fields.
Now we will introduce the fundamental objects of the
Euclidean quantum field theory. First, for our interac-
tion, we choose an even polynomial in the normal
ordered products

b4

VAT Da,ieds,

r Jj=0

(4. 1)

where the ¢, are independent of r, a¢,=1, and the :qbf.’:
are given in terms of the ¢, by Eq. (3.12). This in-
teraction is the linear sum of terms which act only with-
in a single cell.

We need the following objects. First the partition
function (periodic boundary conditions)

Z = E(exp(-gV)), (4.2)

where the unnormalized expectation value defined by
(2.13) is used. A similar formula defines the corre-
sponding partition function for free and Dirichlet bound-
ary conditions. The connection with the Fock space
operators is given by

(Q,, exp(~ ZditH)R,) = E(exp(- gVW]/[E(1)].

We further need the Schwinger functions or corre-
lation functions in the language of statistical mechanics.
The Schwinger functions are the analytic continuation of
the Wightman functions to the Schwinger, imaginary
time, i.e., Euclidean space, points. They are defined
as

(4.3)

S(ry, £y 1) =By ¢, - . €x0(-£V))/2Z,

(4. 4)
and similarly for the other boundary conditions.

The main tool that we will use in discussion of the
limit of (4.2) and (4. 4) as L — < will be various in-
equalities. In Appendix A we discuss the requirements
for validity and list for reference some of those which
are useful here and occur in the statistical mechanics
literature. Some of them have been extended to cover
our cases. First we will relate the quantities defined
by the various boundary conditions. From Eq. (2.10),
since exp(~ ¢2) <1 for all real ¢, it follows at once that

Z =22, Z =Z_. (4.5)

Let us now consider the relation between Z and Z_. We
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can go from Z_ to Z continuously by increasing. from
zero to unity, one at a time, the coefficients A, of each
term in the 25 given in (2. 10). If we compute,

d i
o Z-M=E MO 0,6, 50y mexp(=gV) 20 (4.6)

r

by the Griffiths inequality (A3). Thus by the integra-
tion of (4. 6) we can conclude

Z>Z., Z 2Z>Z.

(4.7

For the Schwinger functions, if we do the same thing,
then

2

axr S-{K }(rlv L.

., r,)

=EN Hebrm Doy b5, ex0(-g7)
XE_{x }(exp(-gV)) - E_{x } (D¢P 1w €XP(— V)

XE_{x }((b’x dyr" exp(~ gV [E_{x}(exp(- gV))]2=0
(4. 8)

by the Griffiths-Kelly-Sherman inequalities (A5). Thus
integrating (4. 8), by a similar argument on the relation
between A_and 4,, we have
S(ry, ..
S.(ry,..

Lr)yeS(ry,. .. (4.9)

)28 (r, ..., 1) =0,

where the positivity comes from Griffiths inequality
(A3).

Let us now derive an upper bound for S. First we in-
troduce the notation

bpr=x.0, 0sx S 0 =21, (4.10)
Now, by the inequality between the geometric and
arithmetic means, '® we have

1 n n

;Zxan,-Zch,-- (4.11)

i=1 i=1 i=1

Since, for periodic boundary conditions every cell is
equivalent, for the purpose of taking the expected value
we need only consider, say, xJ instead of the left-hand
side of (4.11). Thus we may write

S ey s B Lt oA,
[5 0 [ Dioesy €Xp(—=A =gV dx,
(4.12)
Next let us consider the effect of introducing a factor of
exp[%KA"’zg_;, (252 = %,%,,40,01,5 = X1X1.50,0, )] (4.13)

in the numerator of (4. 12), where the reader is referred
to Section 2 for the notation. Taking the derivative with
respect to x gives

as{r}
ETY

1 -2 +2 1. 1
=zAd (GZ’E(Z’C;' = XT X, 0y0,5 = X1 X;50,0;5)
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- FIG. 1. The adjoining of an
additional chunk B to the ori-
ginal lattice A. The addition-
al coupling terms not in 4 or
B considered separately are
-- shown by the broken lines.

1 -2 2 1 1
= Al [Z}’ E2xI? = xmlx, o= 2 %, o).
]

(4.14)

Now a special case of the geometric mean-arithmetic
mean inequality gives

nely 12 2 4.
Xy S~ [(n+ Dxm2 4+ ym2] (4.15)
which applied to (4. 14) gives
BS{X} > Ad-z ne2 n2 n+2
™ > 5T 2) (/;J; [2E(xP*?) — E(x13) - E(x1"2)] (4.186)
=0,

for A =0, as all cells are equivalent for periodic bound-
ary conditions. If we now look at the structure of S{\}
as a function of A, it must be

Sid= [ exp(= 1) do(®), (4.17)
where dp = 0. In this case the BO'_I(K) generalized Padé
approximant based on exp(- xs) (see Appendix B) forms
a lower bound to S{A}. As we have shown near » =0 that

S{\}=A+Bx, A, B>0, (4.18)
we conclude that

S{r}=A4 exp(Br/A), (4.19)
and so

S{x=1}=s{n=0} (4. 20)

But, by the definition of A, Eq. (2.7), the integration
over x, in the modified numerator of (4. 12) is decoupled
from the rest of the integrations. Thus, if we multiply
numerator and denominator by a convenient factor, in-
equalities (4. 12) and (4. 20) combine to imply

S(ry,....r)

[ xexpl— $m2a%2 - g 52 a3 ) dx
[ expl— (zm3a% + dAT?) 5% — g 38 a2 x3 :]dx,

[§ e [T (oa1) exp(= A* = gV) T, %,
fZ fz“'r:ﬂ)exp(—A -gV)pdx,

(4.21)

The action function A * differs from A by not having the
terms

%Ad-z‘%\ (%1%1.5 0101, 5+ XX, 5010 ¢). (4.22)
If we add them, by an argument identical to that which
allowed us to conclude Z = Z_, (4.7), we conclude that
this addition will increase the numerator of the second
factor of (4.21). As the addition of (4. 22) makes the
second factor increase to unity we conclude
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S(ry,...,r,)

< __Jgxrexpl- gmiata® — g3l a 6™ ] dx
[5 expl(Gmoal +dat®) & — g 35 a, i 5% dx

(4.23)
independent of L.

The same upper bound will also hold for S, by the
same proof, provided that when we wrote (4. 12) we
picked x, such that both E, (x7) and E,(xI*?) are simultan-
eously maximum. I conjecture that such a choice is
substantially possible, but have not pursued a proof.

We next turn our attention to the behavior of the
various objects of the theory with the size of the sys-
tem. First, let us consider the case of Dirichlet bound-
ary conditions. Referring to Eq. (2.9), we see that if
we adjoin an additional chunk (Fig. 1) to our lattice by
increasing, one at a time, the coefficients A of those
¢r b Which link the original part of the lattice with
the new chunk, then as

0Z-\Nfan
—%ﬁ =E_ {AH¢rdns) 0 (4.24)
r
by Griffith’s inequality {(A3), we conclude
Z_ 4.5 2Z_,Z_ 5 (4. 25)

where A and B are the two pieces of the lattice.

Next consider doing the same thing to the Schwinger
functions. First, the addition of an uncoupied part of
the lattice does not change the Schwinger function as

E.p+81 ¢ry = @rq €xp[— g(Va + V)]}
E-.A+B{exp[—g(VA- VB)]}

_Eoa{¢r v Ory exp(= gV )IE. plexp(—gV,)}
E_ ,iexp(- gV I E. plexp(- gV )]

(4. 26)

=S_,(r,...,1,)

Now, as we increase the coefficient of one coupling
term at a time, we have

as-,A+B{A}(r17 b rn)
an,

=E. a0y, = 0p 6:Ops expl-g(V, + VIl
E_ 4.5 (MNHexpl- gV, +V )]}
=B up Mg - 0 expl-g(V, +V,)]}
XE_ g0} {0,005 expl-g(V, +V )]}
X[E_ ., {1} {expl=g(v, +V )220 (4. 27)
by the Griffiths—Kelly—Sherman inequality (A5). Thus

we conclude also that S (r,, ..., r,) increases monotoni-
cally with the system size.

Now let us consider Z,. Again we adjoin an additional
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piece of lattice to what we had. The partition function
for A + B contains, in the integrand, an additional factor
of

expl~ 3872 T (0= br)’l <1, (4. 28)
where the sum is over the boundary. Thus
Zf,A*B SZ«- A Z+,B (4. 29)

If N(X) is A? times the number of cells in lattice section
X, then we may rewrite Eq. (4.29) immediately as

1 1

NATB) PZous < Fa) Mea
N(B) 1 1
T N@ + B) (N(B) InZ. .5 = NA) I“Z*'A>’
(4. 30)
which implies
L oz, <tz 4.31)
NEA) s = WAy M (4.

provided we choose A =B. Thus, at least for doubling of
the size of the set we have shown that [InZ, ,/N(A)] is
monotonically decreasing with N(A). For any dimension
d we can return to our original hypercubical shape by
repeated applications of the above argument. The new
hypercube will be twice as big on each edge (2¢ times
the volume). Applying the above argument to (4. 25) we
find

1 1

N(@A) 220 7 A

(4. 32)
so that we have [1nZ_' A/N (A)] monotonically increasing
with N(A). Since a bounded monotonic sequence must
tend to a limit we can now conclude

L InZ, = lim L InZ, = lim 1 InZ_ > 1

I Hm 73 o 77 iz

(4.33)

where the passage to the limit is by way of size doub-
lings, with g and A fixed. Clearly the same results hold
with AZ* replacing Z,, by the nature of inequalities (4.25)
and (4. 29).

We may remove the restriction on the sequence of
L’s over which the limit is taken by the following argu-
ment. Let us fix a box D of edge K, and consider another
box C of edge L, which is going to infinity. If we write

L=mK+R, (4.34)

where m is a positive integer and 0 <R <K, then we
may dissect C into m¢ full boxes of edge K plus no more
than d(m + 1) partial boxes D, of edge K. By repeated
applications of (4. 29) we may write, after taking the
logarithm and dividing by N(C),

Loz <z s 2 T mz
N(C) " “+c T N(C) T T T N(C) T T
(4. 35)
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If we take the limit L — = for fixed K, then lim[N(C)/m¢]
=N(D). Furthermore, for fixed K there are only a finite
number of distinct types of partial boxes D_, so that the
sum of (4. 35) is less than the maximum of 1nZhDT over
this finite set times the number of terms. Since N(C) is
proportional to m?, the summation term goes to zero
as L —», Thus the largest possible limit is
lim sup [1/N(C)] Inz, ;<[1/N(D)]InZ, ,.

L~

(4. 36)

But since D is arbitrary we may select a subsequence
of all possible box sizes so that we get the smallest
possible limit. Thus, by (4. 36)
lim inf [1/N(D)]1InZ, _=1lim sup [1/N(C)]InZ, .
K=o

L=w
(4.37)

But Eq. (4.37) implies that all limits coincide, so that
the limit specified in (4. 33) exists when taken over all
L, as one would have naively supposed. The above
arguments also work with the sense of the inequalities
reversed for Z_ and justify the existence of the other
limit in (4. 33) when it too is taken over all L.

Equation (4. 33) gives meaning to the free energy per
unit volume

fi==1lim (1/L%HInZ,,

L=

(4.38)

with fixed ultraviolet cutoff A >0, for every nonnegative,
real coupling constant g, and every real unrenormalized
mass mZ. By inequality (4. 7) we can similarly give
meaning to the case of periodic boundary conditions. We
note from inequality (4. 8) and bound (4. 23) that if we
integrate the differential equation that carries us from
Z_to Z  that

InZ-1nZ_xKL*?!, (4.39)

where the constant is proportional to bound (4.23) on
the derivative. Consequently, we conclude that
1
f==lim 3 InZ=f (4. 40)
L-w L
as the surface-to-volume ratio goes to zero for a large
box. If, as conjectured above, (4.23) bounds S, as well,

then f=f, =1..

1t follows from the monotonicity of S_ and the upper
bounds (4. 9) and (4. 23) that we have the existence of
the limit

S(r,,.. (4.41)

LT = 1Lim S(r,...,r,),

where the limit is taken over all L.

In the same way, we can define ¢ for periodic bound-
ary conditions. (We have not proved that the whole se-
quence converges, but if it does not, we can, by
standard arguments, find a subsequence which does. )
Presumably S, is bounded and so we can also define
S, for free boundary conditions.

Consequently, we have shown in this section that the
infinite volume, or thermodynamic limit, exists, and
therefore the fundamental quantities, free energy per
unit volume, and the Schwinger functions, are well de-
fined for Dirichlet boundary conditions. The free energy
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per unit volume has been shown to exist for free bound-
ary conditions and for periodic boundary conditions as
well.

5. CONSTRUCTION FROM THE PERTURBATION
SERIES

In this section we undertake the construction of the
free energy per unit volume and the Schwinger functions
in the infinite volume limit in terms of their perturba-
tion series expansions in g, the coupling constant. We
will show that there exist functions which are continuous
for all real positive g and whose formal power series
expansions are asymptotic at g=0 to those of the in-
finite volume limits established in the previous section.
It is most convenient to start with our system once
again finite in size, and that is what we now do.

In order to connect the perturbation series with the
limiting functions we will use generalized Padé approxi-
mants *%+1° with an exponential kernel. For the con-
venience of the reader, we have given their definition
and have detailed some of their properties in Appendix
B. In order to apply them we note the following property
of our interaction. Since the polynomial implied by
(4.1) and (3. 12)

» ) » )
P(¢)=2 a;: 9% =07 b, ¢ (5.1)
J=0 j=0
has finite coefficients, and b,=1, as long as A >0,
there must exist a constant K such that
P(p)+K=0 (5.2)
for all ¢p. Thus, if M =NK, we must have for our
interaction V
V+M=0 (5.3)

for all ¢,, i.e., V is semibounded from below. Thus
there exist distribution functions, simply related to
those of Section 2, such that

E_(exp[- g(V+M)])= [T exp(—gn)dp. (1), (5.4)
for Dirichlet boundary conditions, where dp_=0. A
similar structure also holds for free and periodic
boundary conditions. Now for functions of this form we
may construct upper and lower bounding, generalized

Padé approximants
B, ()= E (expl- g(V+M)]) =B, (g,

and so too for free and periodic boundary conditions.
We observe explicitly that the lower bounds are in-
dependent of M as

E_(exp(~-gV))

(5.5)

= exp(gM) E_(exp[- g(V + M)])
éexp(gM)gl) o, expl - g(8, + M)]
ZJZI o, exp(—gB,). (5.6)

We now use the ideas of Villani’s limit theorem 2°-%
as applied by us® to statistical mechanics. Now, since
we may consider B, _,(g) as a function of the box size
L, and (5. 5) holds for all L, and since, by (4. 32) we
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have monotonic increase as L doubles, we must have

max {lexp(gM) B, ..()]' ey

<[E_(exp(~ gV) '/ 24 <exp(-£.), (5.7)
where L(n) is the value of L, selected from all size
doublings for an initial L, for which the maximum ap-
proximant is obtained. Similarly, by (4.31) we may also
conclude

min{{exp(gM) B, (&)’ L4y

> [E, (exp(- gV) /2™ > exp(~£,), (5.8)
where here the approximants are defined by the
E (exp(-gV)).
For any fixed, finite, L, g, A, we have
lim exp(gM) B, _,(g)=E_(exp(-gV)) (5.9)

Meoo

by the convergence properties of the generalized Padé
approximants. We likewise can impose (5.9) uniformly
over any range of L, A <L <L,. We can, by choosing

L, large enough, make

[E_(exp(- gV)/28 = exp(- £.) - ¥, (5.10)
for any ¢> 0, which forces L(x) to infinity as n goes to
infinity. Thus we conclude that

exp(-- ) = lim [mgx{[exp(gM)Bn,_l(g)]w"}]

zexp(—f)~e. (5.11)
But as €>0 is arbitrary, the limit exists, and is equal
to the function exp(- f.) defined in the previous section.
Thus we have shown [also using (4. 40)]

f=f.=-lim [m%x (% In[eXp(gM)B",-l(g)]ﬂ,

n~o©

(5.12)

where L ranges over doublings and the approximants
are determined by the L-dependent, E_(exp[—g(V +M)])
series coefficients. Similarly we have by analogous
arguments for the free boundary conditions

f =-lim [Mgn(%; In[exp(gM) Bn,o(g)]>:| (5.13)

e

sf=1,

where L ranges over doublings and the approximants
are determined by the L-dependent, E_(exp[- g(V +M)])
series. By the construction of the B’s

f... = (1/L% In[exp(gM) B, ,(g)] = O0(g*™1),

S = (1/L% In[exp(gM) B, _,(g)]=0(g*") (5.14)
as B, ,(0)#0. Since explicit expressions can be given for
the coefficient of every power of g in the formal power
series expansion of f, , in terms of expectation values
over the distribution functions for the free field, it
remains to indicate how all the coefficients tend to

finite limits as L — =,
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If we formally expand

Z-,L<g)=§ AL, i) g?, (5. 15)

then we see at once in terms of orders of magnitude for
L large that

E(L,j)=n.L,j)/m(L,0)~L (5.16)
as
n_(L,j):f [M; j); a,: ¢ :]’ du._ (5.17)

by (2.12), (4.1), (4.2), and (4.23). The calculation of
the free energy

—L‘f_:an_.L—_—an_'L(O)-#éx_(L,j)g’ (5.18)

gives formal power series coefficients which are related
to those of (5. 15) as are cummulants to moments. That
is,

AL, D=E(L, 1),
AL, 2)=E(L, 2) - [E.(L, D,
AL, 3)=E(L,3)~ 3E.(L, 1) £(L, 2) + 2[£_(L, DT,
AL, 4)=¢(L,4)~ 4£.(L,3)E(L, 1)
-3[E(L, 2)P + 126 (L, 2) [(L, 1)]?

- 8[£.(L, D], (5.19)

Because the free field (m§> 0) satisfies a cluster proper-
ty, it can be shown that the A(L,j) «<L¢? only and that the
higher powers of L? cancel. This result can be demon-
strated in the following manner. First, let, from (5. 1),

X, =P(¢,)+K (5.20)
for notational convenience. Then
]
s-(L,j)=<ZE EkHIX,>- (5.21)
ror, T, = k

where ( ). is the normalized expectation value with
respect to the free field distribution function with
Dirichlet boundary conditions. We may then write, by
(5.19),

AL, =2 0 U-(L,X,I,---,X,j) (5.22)
1 Ty
where the U’s are the Ursell functions, i.e.,
UL, X,)=X,).,
UL X, X)=XX). ~X). X, (5.23)

U-(Ler)Xs:Xt) = <X7X5Xt>. - <X,->- <X3Xt>_
- <Xs >- (X,-Xg>- - <Xt>- <X1Xs>-

+2X,) X)Xy

The Ursell functions have the property that if the X,
fall into two groups {Y,}, {Z,} such that for every sub-
set of the {X,} and every subset of the {Z} that

(Y, Y, Z e Zy=(Y Y ) (Z, - Z)), (5.24)
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then U=0. If we define

g, =
A kIf;"[Ath

(5.25)

where A is a subset of k=1,...,j, then it follows?3:2¢
from the definition of the Ursell functions that for any
partition of 1, .. .,j into two disjoint sets

UALX,,....X,)
1

- ¥

partitions

(1) (1 (06 ).) [0 4 ymd. = (0, ). (050

(5.26)

where A’C A, B'cB, {1,...,j}=A’UB'UC,U---UC,.
By direct calculation we can bound the I1, factor. For
the free field the last factor decays exponentially with
the distance between A’ and B’ by the properties of the
lattice Green’s function, >® and the inequality (A23). This
decay is roughly proportional to exp[—md(A’, B")],
where d(A’, B') is the distance between A’ and B’. Thus
we only get a significant contribution to the sum when
all the r; are near each other and so the )_(L, j) are of
the order L¢ when A >0 and m2>0. Thus the coefficients
(x/L4) of f. are finite, and the explicit expressions tend
as L — = to the usual momentum representation integrals
as expected; the lattice Green’s functions [as in Eq.
(3.11)] play the role of propagators. It follows in the
same way that the L — « limit for the coefficients is the
same for f, and f as it is for f..

Since, by (4.23), and direct calculation, | f/i and | f'!
are bounded uniformly for all L and g, if A>0, m2>0,
we must have that f_ and f are continuous functions of g
for all real positive g. Since exp(gM)B, _,(g) is an entire
function and bounded in absolute value for complex g by
its value at Re(g), the uniform bound on the derivative
(see Appendix E), together with B, _,(0)#0, implies that
there are no zeros in an angular wedge, W,
larg(z)| s7/2, |z] <sw, for some w>0, uniformly in L.
Thus, by standard theorems on the convergence of a
sequence of bounded analytic functions,>® and the proper-
ties of the generalized Padé approximants, it follows
that /. =f is analytic in the interior of W, and continuous
on its boundary.

Therefore, thinking of Dirichlet boundary conditions
where our results are most complete, we conclude
that our procedure (5. 12) constructs a function f_ which
is analytic in the interior of an angular wedge W, con-
tinuous on the whole positive real g axis, and asymptotic
to the usual perturbation theory expansion at g=0 in W.

Next we consider the Schwinger functions. To this end
we add to the action A_ given by Eq. (2.9)

H":§ het, (5.27)
where there are only » nonzero h, in the sum. We re-
quire that either all k>0 or all b, <0. In this case the
Griffiths-Kelly-Sherman inequalities still hold, and so
does Eq. (4.27). Thus S_ increases monotonically with
box size L as before. We can give an upper bound on the
magnitude of the S’s (and S_’s). By the Griffiths-Kelly-
Sherman inequality, the $’s increase if we add enough to
h, at every cell to make them all equal to &, the maxi-
mum |k, in (5.27). Since this procedure leaves a
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translationally invariant lattice, the arguments leading
to (4.23) apply and yield for this case

S(ry,...,r,)

[g x"exp[—smiatx®— gyt oa;:x* +haldx
= expl— (Im2 AT+ dA®2) 2 — g 32 ja, 158 ¢ + hx]dx

{5.28)

Thus, the limit as L — « exists for each Schwinger func-
tion. We proceed by a variant of the previous method.
Consider

Y _(h,, Ly=1n[Z_(h,)/Z (0)].

The partial derivatives of Y_ with respect to the 4 give
the Ursell functions

U{r)=S(r),

U(r,s)=S_(r,s)=-S_(r)S_(s),

UAr,s,t)=S_(r,s,t)-S.(r)S_(s,t)
-S.(8)S_(r,t)-S_(t)S_(r, s)
+2S_(r)S_(8)S_(t),

(5.29)

(5.30)

from which the Schwinger functions can be directly con-
structed as

S_(r)=U_(r),

S_(r,s)=U_r,s)+ U_(r)U_(s),

S.(r,s, t)=U_(r, 8,t)+ U_(r)U_(s,t)
+U(8)U_(r,t)+U.(})U_(r, 8)

+U_ (r)U_(8)U_(L), (5.31)

> nvu..

S (ry,.. .
B partitions

L, )=
We next wish to show that Y_ is monotonically increasing
in L. First Y_(0,L)=0. If we differentiate Y_ with re-
spect to a single k,, we obtain

Y )
ak' = E-(d’;- exp(H,, - gV))/E_(exp(Hn - gV))’

T

(5. 32)
=S_(r).

If we follow the line of argument given at (4. 26) and
(4.27), we conclude that if X is a parameter which adds
terms to the action A_ so as to increase the system size,
that

aS_(r)
ox

>0, (5. 33)
as the Griffiths—Kelly—Sherman inequalities continue
to hold provided all %z, >0. Thus, integrating Eq. (5. 33)
with respect to k2, we conclude

Y.

—= 20,

oY (5.34)

We complete the argument on each k, separately until
the desired value of h, is reached.
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We are now in a position to construct a set of gen-
eralized Padé approximants. Let us fix our attention on
h, belonging to some finite dimensional closed region
/{ which contains the point h =0, and in which all
h,=0. We now have, as with (5. 5)

Bn,o(g’ hr! L) ZE.(exP[H,,-g(V +M)]) = B",-1<g, hri L)-

(5. 35)
Thus it follows directly that
B -l(g) hl‘y L)
=ln| e s . .
b(gh,, L) —ln( B. (2,0, 1) Y (h,, L) {5.36)

Let us define L(h,, n) as that L for which b,(g,h,, L) is a
maximum, and L(n) the minimum L(h,, n) over all h, in
H. Since for some point in // the minimum is obtained,
by arguments like those at (5. 10) it follows that L(n)
tends to infinity with ». By integration of the uniform
bounds in L for the $’s and by use of Eq. (5. 30) we can
show that Y_ is uniformly bounded for ali h, in /4. Thus
as the Y_ are monotonic in L they tend to a limit. By
arguments like those at (5. 12) we conclude

Y_(h)=1imb (g, hy, L(n)) =Lim Y _(hy, L) (5.37)
exists. By standard theorems on the limit of a bounded
sequence of analytic functions (in the #_) we conclude
that ¥_(k,) is analytic in the interior of // and continuous
on the boundaries. By the uniform bounds (5. 28) we may
differentiate ¥ _(k,) and use (5. 31) to construct the
Schwinger functions. They can be defined at h,=0 by
continuity. The reason for this careful construction is
that in the infinite volume limit there might possibly be
a phenomenon analogous to a phase transition so that
S(r) #0 and S(r) with 2=0" might equal minus that for
h=0". We have thus constructed for all real positive g
the Schwinger functions for Dirichlet boundary conditions
for our lattice theory.

By the method of construction, the formal series ex-
pansions of the Schwinger functions so constructed agree
with those directly computed for the Schwinger functions,
provided the latter are finite. If, before taking the limit
L —~ o, we expand the numerator and denominator in
Eq. (4.4) for Dirichlet boundary conditions, we obtain,
in the notation of (5. 20), and letting

b, (5. 38)
be the product of the fields involved in the Schwinger

function under consideration. We again use ( )_ to de-
note a normalized expectation value. Thus

S.(ry, ..., 7,,) = <¢s>- - gat rZ (<¢5Xr>-
= (95). X)) + B MM T (psX Xy
- <¢s Xr>- <Xs>- - (‘bsxa)- <Xr>- - <¢S )- (XrX.>-

+2(¢g). X)X, )

g

—ﬂAM;!EtEU-(L’¢S!XﬂXs’Xt)+"'- (539)

We may again apply the arguments at Eq. (5.26) which
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now imply that a significant contribution to the sums
comes only in the neighborhood of the set S, and hence
we obtain for m2>0, A>0, a formal power series in g
with all terms finite. Again we find, by the boundedness
of the derivative with respect to g, that the S_’s are
analytic in g in the interior of the same angular wedge
W as was f., and asymptotic in W at g=0. This result
completes the construction of the infinite volume limit
of the free energy per unit volume and the Schwinger
functions for our lattice theory.

6. MASS RENORMALIZATION

In this section we will give the general framework for
mass renormalization for a Euclidean lattice theory.
The results will not be as complete as in the previous
sections. Much fuller results will be given in the next
section for g: ¢*: theory. We remind the reader that
the power counting arguments applied to standard,
quantum field, perturbation theory indicate that for in-
teraction (4. 1) infinite mass renormalizations are not
expected when the degree 2p satisfies

p<1+1/(d-2), (6.1)

where d is the space-time dimension. Consequently this
problem has not really entered into the extensive litera-
ture of : P(¢),: theory, although it has certainly not been
ignored.

The usual practice in Minkowski space field theory is
to define the mass renormalization in terms of a pole
in the propagator at 2 =-m?. As this definition, at
least for a finite mass, refers to the behavior at low
momenta, we need to study the behavior at large dis-
tances. We would expect that

0 <(o ¢, = exp(-maljl),

where j is the number of lattice steps (r/A) and A is
the lattice spacing. In the language of statistical
mechanics, the renormalized mass m is proportional
to the inverse correlation length

(6.2)

E:(WLA)'l. (63)

Physically we view mass renormalization as the ad-
justment of the mass parameter m in the Hamiltonian
in such a way so as to make the renormalized mass m
take on its experimental value for given values of A and
£. When A is chosen smaller and smaller to corre-
spond to a vanishing lattice spacing, the correlation
length must, by (6. 3), tend toward infinity. This be-
havior of the correlation is characteristic of statistical
mechanical systems which are approaching a critical
point, such as the Curie point where spontaneous mag-
netization becomes possible. In order to illustrate the
analogy we will briefly review the Gaussian model and
the lattice free field.

The nearest-neighbor Gaussian model?” is an as-

sembly of spins whose average magnitude is unity and
which are distributed as

(2m) /2 exp(— 12/2) dv;, (6.4)
and interact as
-J Vv, (6.5)
nea rest
neighbors
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The partition function is

Z:(Zﬂ)'”d/zf *: [ exp(Bs X X vy =32 V| I dv,,
net ghbors )
(6. 6)

where B = l/kBT, ky is Boltzmann’s constant, and T is
the absolute temperature. For a d-dimensional, hyper-
cubic lattice the spin-spin correlation function is
- - d - 0
Z Y am)y N2 f f Vb €Xp(BJ 25 Viv!—éz Vi1l dv,
- nearest i

neighbors

- 1 ¥ cos{2n[k - (a —b)]/N}
= (Vo) = §z k;z=1 ,3——:11 1-28Jy¢_ cos(2nk /N)’

(6.7)

where the critical temperature at which all spin-spin
correlations diverge for this model is given by

248J =1, T,=k,/(2d]). (6. 8)

For |a-b| large and T2 T, we may compute the
asymptotic behavior of (6. 7) by expanding in the de-
nominator cosx =1~ $x%+ 0(x?) and integrating. ?® In the
limit of a large system, we obtain

BJ(la—D|/E)e-1/2
(2m)t/20 |3 — |42

<Val/b>= K(a-n/z(‘a_b’/g)

o _BJE®2exp(~ la=bl/E)
2(d+1)/2ﬂ(d'1)/2 {a_b’m-n/z

(6.9)

where K,(x) is a modified Bessel function of the second
kind and £ is the correlation length given by

£=[pJ /(1 - 248" (6.10)

The expression analogous to (6. 6) for lattice field
theory is the periodic boundary condition analog of (2.4).
If we introduce the change of scale

P2 =(2dAT? + AMmE)BE, (6.11)
then by direct substitution and comparison we identify
BJ =1/(2d + A%2), (6.12)

which tends to the critical point as A— 0. For the corre-
lations we have

(D) = (dAF2 + AGMEY™ (),

£=(am,) ™,

m 43 /2 exp(—myAla=bl)
a2 2(d+3)/2,n(d-1)/2(A|a_b|)(d-1)/2

m 32 exp(~mylrl)

:dzzms)/zﬂ(a-n/z ,rlm-l)/z (6'13)

in the case where £ > 1. We denote the distance as the
lattice spacing times the number of cells as in Sec. 2;
Ir| =Ala-b|. Thus we see that the analogy is that as
the lattice spacing tends to zero (ultraviolet cutoff tends
to infinity) the “temperature” tends to the critical tem-
perature from above in such a way as to produce an
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exponential decay on a fixed (i. e., not lattice dependent)
scale.

We remark that although the underlying lattice does
not possess rotational symmetry, the long-range (com-
pared to the cell size) correlations do. As this property
is a usual one in critical phenomena, we anticipate it
here also. In the above discussion we have not been
careful about the boundary conditions and the results are
for short, long-range behavior, i.e., long compared to
the cell size but short compared to the total system size.
Clearly, Irl| in (6. 13) for periodic boundary conditions
would have to refer to the shortest distance between a
and all the periodic images of b.

We introduce, for the case of Dirichlet conditions the
following definition of the renormalized mass for a
system of size L <«

’ (L)— in "ln[<¢r¢’l>-(‘4 +m°‘lr—sr‘”‘”/z
A= Ir-s| ’
(6.14)

where the r and s are taken in the conventions of Sec. 2,
and we select, independent of the system size,

A-lzmin< [§ o exp[— ymiad® — gy hoa;: 5% ] dx )

[o expl- (3m3A?+dA*?) P~ g 3?2 a,:x: [dx
(6.15)

where the min is over a preselected range of m2, in ac-

cordance with (4.23) to insure m(L) =0, and in (6. 14)

@ >0 is arbitrary. This definition has not been proven

to be the same as that of the true renormalized mass,

m . It is true at least that m . =m, and that they go to

zero together, although the rate may possibly not be

the same.

We now proceed to show that (6. 14) does define a
value of m in terms m?%, A, and g in the limit of infinite
system size. First adjoin an additional hyperplane of
cells which are uncoupled to the rest of the system.
Then (¢p¢,.,) =0 and so — In{¢,¢,, ) =+ =. Therefore,
this addition does not change the location of the minimum
in (6. 14). Now by (4. 27) every (¢,¢,) increases as we
couple the additional hyperplane of cells. Therefore
every term in the minimum decreases, and so

m(L + 1) <sm(L). (6.186)
But since m(L) =0 for all L, we may define in the in-
finite volume limit the renormalized mass as

m:ll}plm(L). (6.17)

An additional property?® is that the renormalized mass
is a monotonic increasing function of the explicit de-
pendence on m,z). This result follows easily from the
Griffiths (A3) and Griffiths-Kelly-Sherman inequalities
(A5) as the derivative of every term in the minimum in
(6. 14) is proportional to

£ = (Drds) (98)
(D:00

Since the minimum is realized for some r, s it must in-
crease as long as m2 is in the preselected range for
(6.15). There is also an implicit dependence on me
through the constant C, Eq. (3.11), which enters into
the definition of the normal ordered product. C de-
creases as m2 increases. For the special case of a

= 0.

tE <¢r¢'s (6. 18)
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g :¢*: interaction there is a — 6gC¢* term so that the
complete coefficient of ¢® increases monotonically with
m32, and the above argument holds for the complete de-
pendence on m2,

We will next show that by a proper choice of m2 we
can make m as large as we please or as small (>0) as
we please. If we could also show that m(m2) is con-
tinuous (true for g: ¢* :, theory), then we would be able
to conclude that the theories we have been discussing
are mass renormalizable, We consider now two cases.
In the first case g=0. Then m = |m,| and m2>0, so the
proposition is true.

In the second case g>0. Here we can choose mZ>0
so large, independent of L, so that to whatever ac-
curacy we desire, the entire contribution to the
integrand for

zZ = [ :: f exp|- 2ad ; [-2a% 7, (¢:Pere)

(8}

+ (m2+ 2da?) g2+ 2gP(o )} 1T do, (6.19)
r
comes from the central peak ¢,=0, and in that region
IgP(¢,) | <€, for any e >0. [P(¢) is defined by Eq. (5.1)
and C by Eq. (3.11). The constant C decreases as m?
increases. ] Thus for m2 sufficiently large and positive,
m=m, and can be made as large as we like. We remark
that if p=1 [degree of P(¢) is 2p] then m? =m2 + 2g so
that clearly the proposition is true. Otherwise, if p>1,
we select m2 to be very small and positive. By the
structure of P(¢,) there will be two equal peaks in the
integrand of (6. 19) for each ¢, near b == . We compute

PY$)=0, ¢ T, (6. 20)

where C is given by (3.11). There are two cases to
distinguish: first, if d=2, C - as m2—0, and, second-
ly, if d>2, C remains finite as mZ 0. If we introduce
the scaled variables

0= 0./, (6.21)

then, by selecting m2 small enough, d=2, for all A, or
by selecting A small enough, by (3.13), for d> 2, we
have to any accuracy we like insofar as the computation
of {¢.¢,) is concerned when d> 2+ 2/(p — 1), that the
expression (6.19) is equivalent to

Z.x ), exp(at?ary) Y 0.0,5), (6.22)
{gp=t1} r {6}
where
AT282 > (0.99) 3412 C, (6.23)

for all p =2 and A>0, sufficiently small.

For d=2+2/(p-1), instead of a sum over {0, =x1}
we have an integral over a bimodal spin weight dis-
tribution of finite peak height, even in the limit A — 0.
For 0 <(d - 2)(p - 1)< 2 the peak height decreases as
4 — 0. However, as softer spins, e.g., compare the
Gaussian “soft spins” with the Ising “hard spins, ” allow
spin states with higher correlation energy for the same
mean spin, we should have a higher critical temperature
or a smaller critical value of A%-2}2 than for the “hard
spin” problem (6. 22). Thus we will continue to work

George A, Baker, Jr. 1335



TABLE 1. Comparison with Ising critical values.

Dimension K_(d) 3c(d)

3 0.22171 0.63273
4 0.14988 0.37623
5 0.11403 0.28209
6 0.09236 0.23023

with (6.22) for all d =2, even though we have not given
a rigorous justification for all dimensions.

For d =2 we can make the right-hand side of (6. 23)
as large as we please by choosing A small enough. For
d>2, by choosing A and m2 small enough, we can make
C from (3.11) as close as we like to

1 [ f dk
(2m)? f-,, 2d-27%4_, cos(k,)

=3 [o lexp(- y) [(v)1¢dy,

A82C =

(6. 24)

by the integral representation of the Bessel function.
We may obtain a lower bound by observing % that

0=<y=0.3,

5 1")},

exp(=y),(y) >

?(2@)""5, v=0.3, (6. 25)
which implies, by integrating (6. 24),
1-(0.7)¢* 0.3
a-2C > — -0.5¢
AL2C = ¢(d) 5357 d_z(O.Gﬂ) . (6.26)

We seek to show that (6. 22) is equivalent to a low-
temperature (A%2$? large) Ising model. As we remarked
above, for d=2 we can make M‘ngz as large as we
please by choosing A small enough, in particular,
larger than K_ =0.440687, the critical value which
separates the high and low temperature regions. With
accuracy sufficient for our purposes we give in Table
I the critical values for various d’s from Fisher and
Gaunt * for the Ising model, and the lower bound given
by {6.26) and (6. 23) for A?2¢*. For dimensions higher
than those listed in Table I, the same result holds, i.e.,
3c(d)> K (d). Thus by adjusting m3>0, and A>0 suf-
ficiently small, we have a low-temperature Ising
model. However, for d =2, by the Onsager solution %
and Griffiths inequality (A3), it is well known that

lim inf {0, 0,0 =u >0 (6.27)

{rl~w
as long-range order exists. Therefore, there will be
terms in (6. 14) at least as small as

~In[g(A + meL @V /2y /L, (6.28)

FIG. 2. Expected dependence
of the renormalized mass on
the bare mass.
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which tends to zero as L — ». Thus we can prechoose
the range on m2 for (6. 15) from the required accuracy
and hence we have shown that we can select mZ such that
m is zero or m is as large and positive as we please.
As in addition, m(m2) is monotonic, mass renormali-
zability for any &4 >0, g =0 would follow provided
m(m?2) is also continuous. The question of continuity is
not wholly an idle mathematical refinement, in as much
as there are examples for which it fails. We expect a
curve as shown in Fig. 2, however, the result shown
in Fig. 3 occurs for the two-dimensional Ising model*®
given by the Hamiltonian

H=-J 2 0,0,-b(23 9)/N,

t

nearest
neighbors

(6.29)

where 0,==+1, and N is the number of spins. The second
term causes every spin to interact with the “mean field”
of all spins. The critical temperature is the solution of
the equation

2y (8) =1,

where y is the standard, reduced, magnetic sus-
ceptibility * of the nearest-neighbor part. The transition
is of the familar Bragg—Williams type, and at the
temperature determined by (6. 30) the inverse correla-
tion length as defined by (6. 14) drops discontinuous from
the value determined by the nearest-neighbor part of

the Hamiltonian above to zero.

(6.30)

7.9:6%*: THEORY

In this section we give much more complete results
for g:¢*: 4 in arbitrary dimension than we have obtained
for more general theories. Qur discussion encompasses
g(: 0t L tra: ¢>2 :d) but for ease of presentation we do not
describe this generalization explicitly. The theory of
g:0° :, follows immediately by direct calculation. As
was pointed out in the previous section the renormalized
mass is given by m®=m?Z + 2g. The scattering amplitude
vanishes. That is to say, U_(r,s,t,u)=0, in the notation
of (5. 30).

The first property we establish is the mass renor-
malizability of this theory. From the work of the pre-
vious section, m2(m?2), the infinite volume limit for fixed
lattice spacing A >0, and coupling constant 0 < g< = is
monotonic increasing in mZ from 0 to an indefinitely
large value., We show in Appendix C that it is also a
continuous function of mZ. Thus, by Bolzano’s theorem,
there exists a solution of the equation

p=m(md), 0sp<o, (7.1)

-~
¢ FIG. 3. Discontinu-
ity exhibited in the
inverse correlation
: length {@nalogous to
S the renormalized

mass) for a special
Ising model.
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For definiteness we select the largest such solution,
since when, for example, g =0 many solutions are
possible. Thus we can select

(17.2)

as that value of the unrenormalized mass which makes
the renormalized mass take on the preselected
(experimental) value u.

mi=m(u, g &)

The next property we show is the cluster property.
We will assume that »2 is chosen in accordance with
Eq. (7.2) for p > 0. By the cluster property one means
that if there are two groups of cells r,, ..., r; and

Sy, ..., 8, which are separated by a distance p, then
0<S_(ry,.. .5 8,)

(7.3)

S Ty Sy, 8,) =Sy, ..., T)S (s, ..

<K exp(~ up),

where K depends only on j and 2. The first inequality
sign follows from the Griffiths—Kelly—Sherman in-
equalities (A5). The second inequality which embodies
the cluster property follows from the Lebowitz in-
equalities via the derivation in Appendix A of (A23) and
bound (4. 23) on the other Schwinger functions.

The cluster property allows us to bound Eq. (4. 8) and
the analogous one for the relation between Dirichlet and
free-boundary conditions by a factor which decreases
exponentially with the system size. Since the surface
area and hence the number of terms is only of the order
of 2dLe-1/a¢! | the difference in the S’s and f’s due to
boundary conditions disappears in the limit as L — o,
Thus, the construction procedures we gave in Sec, 5

construct only a single, free-energy density in this case.

and allows us to conclude that the Schwinger functions
for periodic boundary conditions and free boundary con-
ditions also converge as L — « and to the same limit as
for Dirichlet boundary conditions.

Next the cluster property allows us to deduce for any
fixed 0< g< o, A>0 that the $’s and f are continuous
functions of g. In order to see this result we observe
that for L finite

asS.(ry,..., 1)

: == AT (P X~ (05).AX) (1.4)
g m2 B

in the notation of Sec. 5. By the application of inequality
{A23) and inequality (C4) for the two-point correlation
function implied by the definition of mass renormaliza-
tion, we can compute a finite bound for (7.4) which is
uniform in L and hence holds as L — <, Next we need to
consider

a7n(L) _Ad <<br¢gxt>_<¢)r¢g> <Xt>

e P ST ET] (7.5)
By applying inequality (A23) we can bound (7.5) by a
numerical factor times (C2). From there on the proof
of Appendix C implies that |9m(L)/3g] is bounded uni-
formly in L. Now if we compute the second derivative
of m(L) we get from Eq. (C1) and summing first over the
o, of (4.10) by Griffiths inequalities (A3),
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azm(L) o — AZe <¢’r¢s (h‘bf - <¢t>)2> <0

a(mZ)? (¢:9y Ir =5 ’
taking account of the explicit dependence and the de-
pendence through C, Eq. (3.11). Thus, as by (6.19)
et seq. for large enough m,, m =m,, we have, by
integrating (7. 6) from m, to m,

am(L)

om?

(7.6)

2 Lmy)t >0 (7.7

for some large m,. Thus by the rules of partial deriva-

tives we may bound
om(L
2/ omg

das. a8,
dg T og

and thus conclude that S_ is a continuous function of g

when we renormalize the mass. The same type of

analysis also applies to f and we conclude that f is also

continuous.

am({L)
¢ 08

aS_
2 amﬁ

(7.8)

m

The general proof of mass renormalizability in Section
6 assumed that g was fixed and independent of A. Since
m =m, for g=0, and the two-point correlation function
is continuous in g, we may also conclude mass renor-
malizability if g—0 as A goes to zero. Such a situation
has to be considered if a coupling constant renormaliza-
tion is required.

We next show that in addition to the independence of
the boundary conditions demonstrated above, the
g:¢*: theory for A >0 is uniquely determined, in so far
as it is analytic, by its formal power series in g. This
result is related to the Borel summability proved by
Simon®® in two dimensions, and by Glimm and Jaffe 3°
in four dimensions on the basis of a conjectured bound.
It is most convenient to use the momentum transforms
of the Schwinger functions

Glhyy .. k)y=AM 3 0 3 exp(21n‘j'§ k,- r,)?(rl, cey 1)
(7.9)

for periodic boundary conditions. Then the formal ex-
pansion (5. 39) becomes in the usual way!® an expansion
in terms connected graphs with n-external lines. The
standard procedure?®” is to bound the number and size

of such terms. Direct enumeration *+3® of the number of
such diagrams corresponding to the coefficient of g

in (5. 39) leads to the conclusion that there are at most
a B"(2n!) such terms. Each term differs from the usual
form by having

1

mZ+ 44T 4 sin®(rk- 6) (7.10)
for a propagator and
e 1/2a
[T de—L (7.11)
el k=-1/2A

replacing the infinite momentum integrals. Since every
momentum integral is less than (1/A) times the maxi-
mum integrand and every propagator is less than 1/mZ
we conclude directly that the nth term in the expansion
(5. 39) is bounded by

(BY)"(2r)! /nt =(2B")"(n!), (7.12)
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for some B’(A)< », when A >0. This result will hold,
uniformly in the angular wedge W defined in Sec. 5, i.e.,
lz| Sw, larg(z)| s7/2 for some w>0, uniformly in L.
We may then apply *°:

Carleman’s Theorem: If

|f(z)| <an|z|" for 0<|z| <p, |arg(z)| <n/2

(7.13)

holds, then it is necessary and sufficient, for suitably
regularized «,, that } a;l diverge, to conclude that

f(z)=0.

This theorem implies that in view of (7. 12) there can
be at most one function in the angular wedge W which is
asymptotic to the formal power series in g. But we con-
structed such a function in Section 5. Thus it is uniquely
determined by analytic continuation from the A>0
power series in the infinite volume limit without regard
to the construction process which depends on the L —
behavior of the terms as far as that continuation will
carry us. [We have not proved that the S(r,,..., r ) are
analytic in g for 0< g< <, so that the analytic continua-
tion might not carry us very far. Dimock? has shown
that distance does not vanish as A — 0 in two dimen-
sions. ] Since we get a series of the same structure for
mi(u, g, ), the mass renormalization does not interfere
with the above arguments A> 0. Also, the same con-
clusions as above hold for the free energy per unit
volume, f.

In the limit as A -0, we have by mass renormaliza~
tion a bound, Eq. (C4) on the two-point function. If we
set A =0, this bound is uniform in A and finite as long
as the points are not coincident. The bound is integrable
in d-dimensional space. By inequalities (A23) we get an
integrable bound in terms of that for the two-point func-
tion on all the high order Schwinger functions which is
again finite if no two points are coincident, and uniform
in A, Thus a limit A —0 for the g: ¢*: theory can be
defined. (If the limit does not exist directly, we can
consider the sequence An:e/2". Since then the lattice
points for all values of » in any closed region are denu-
merable, and thus the different Schwinger functions de-
fined on that region are denumerable, we can select at
least a subsequence of the A for which every Schwinger
function converges at every noncoincident point. )

In the cases 2 <d<4, as is well known, mass renor-
malization suffices to leave all the terms finite. The
defining integrals converge, which allows the ultraviolet
cutoff to be removed (A —0). The procedure is to have
formally rearranged the series to express the propa-
gators in terms of the renormalized mass m, instead
of the bare mass m,, by summing out all the seli-ener-
gy diagrams. Consequently bound (7. 12) holds for the
derivatives in the limit as A —0 for B’(0) <«, as shown
by Hurst. *” However, we do not know, except in two
dimensions? that the angular wedge W does not shrink
to zero. If it does not, Carleman’s theorem combined
with the existence already shown gives us construc-
tibility at least in W, directly from the power series.
This result falls short of a proof of construction from
the invariant perturbation theory, but we have es-
tablished above the existence of a Euclidean theory and
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will return in the next section to alternate means of
construction.

The final property is rotational invariance. We do not
prove this property but observe that it is characteristic
of phenomena near the critical point. For the two-di-
mensional Ising model?® on the square lattice if has been
explicitly obtained. To the extent that construction is
possible directly from the perturbation series, rota-
tional invariance follows from the term-by-term in-
variance. With this property assumed we can apply
Nelson’s® reconstruction theorem and construct a rela-
tivistic g: ¢*: field theory from our Euclidean one. This
theory is certainly nontrivial at least for 2 <d<4, as
it is asymptotic to a perturbation series which is non-
trivial. We give a brief discussion of Nelson’s recon-
struction theorem as it relates to our case in Appendix
D.

8. STATISTICAL MECHANICAL COMPUTATIONAL
METHODS

Having established in the previous sections that the
mass-renormalized, infinite-volume limit (L — «)
exists, and, for g: ¢* ;4 theory at least, that it is inde-
pendent of the boundary conditions, we now consider the
actual computation of the theory (A > 0). The results so
far show us that the ultraviolet cutoff model is a con-
tinuous-spin Ising model. Mass renormalization forces
this model to behave as though it were at a temperature
just above the critical temperature and tending to the
critical temperature as the ultraviolet cutoff is removed.
One of the most successful methods to treat this type
of problem has been the exact, high temperature series
expansions** summed by the method of Padé approxi-
mants. !* To illustrate the procedure, we will discuss a
pure g: ¢* :; theory. The partition function will be given
by the expression (A > 0)

«©
.

Z': f .i'w f I dqbl‘ eXp‘{Z [Ad-z % (¢rd)r+6) + hr‘br

— (d a2+ Lm2ad) 2 - g A% i - 6CHZ+3C?) ]}, (8.1)

where C is defined by Eq. (3.11). The fundamental
quantities that we will be concerned with are the corre-
lation functions and their various moments

Ur,..

aﬂ
T, InZ . [h=0,
n

= h, ok
pe=atY] [r]tU (0, r),
r

G(k)=A? > exp(27ik - r) U_(0, 1),

Tk, ky, k) =A% 27 20 exp(2mi(k-r+k,-s+ Kk, t)
r s t

xU_(0, r,s,t). (8.2)
The U’s are the Ursell functions and directly related to
the Schwinger functions by (5. 30). The spherical mo-
ments, p,, are useful in determining the critical-point
properties of the model. The moment for i =0 is direct-
ly related to the magnetic susceptibility in the magnetic
Ising model. The quantity G(k) is just the propagator and
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T(k,, k,, k,) the scattering function. In defining these
quantities we use the proven translational invariance of
the theory. It is convenient to introduce a change of
scale

Y= AP o (8.3)
and to rewrite (8.1) as
Z.o [0 [ 0 ey explT N3 gt A% iy,
o A
— (3m2A2 + d)y? — gaTe (2 - 6CALT2Y
+3C%a% )}, (8.4)

where A = 1. By a change of variables we may rewrite
(3.11) as

JRETopu N dk )
(2my? . m2Aa% +2d -2 | cosk,

(8.5)

Let us first consider the case d >4 without coupling
constant renormalization. The coefficient of g diverges
like A"@*) a5 A—0. Thus, for A small enough, this
effect confines the contribution to the integral in (8. 4)
to the points

b=,

% =3cAt? (8. 6)

if we consider m3%A® to be of order unity. We therefore

have an Ising model of spin-3 with
K=J/kT =3CA%2 (8.7)

as can be seen from the equivalence of (8:4) in this limit
to

Z_ o« 7

{op=£1}

exp{K Z E Uroxw-b + A(2~d)/2K1/2 hrcr}' (8' 8)
r (8]

Our criterion for mass renormalization (Sec. 6) tells

us that the correlation length is given by (6. 3) in terms
of the renormalized mass. Although as a practical
matter it is probably not the most effective way to do the
calculation, we may directly expand*?

£~(1-exp(-1/£)"
=1+v+(2d~-1)v®+(4d% - 6d + 3n?
+(8d® — 2042 + 20d - T)o?
16d* ~ 56d° + 84d* - 60d + 17)v°
+(32d° — 144d* + 296d° — 34042 + 214d - 57)°
+ (64d° - 352d° + 928d* — 14964° + 148447

+

(
(

—782d+ 155)07 + -+, (8.9)
where
v =tanhK. (8.10)
We need to solve, then, for a v such that
E(v) =(ma)y?, (8.11)

This solution is possible in this range of dimension as
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was shown [(6.19) et seq.] in Sec. 6. According to the
renormalization group calculations of Wilson** and

collaborators, we expect the singular behavior
E)= V(1 =v/v,)1/2 (8.12)

where v, is the critical value and V is the amplitude.

Thus as A— 0 we have
vy (1 - VPmPA?), (8.13)

and so using (8.7) and (8. 5) we have the mass renor~
malization condition

tanh[v (1 - V3m?4a%)]

3 [ f dk
(2m)¢ f—u , miA%+2d-2% 4 cosk, ’ (8. 14)

which admits a finite continuous solution for m2A% as a
function of m®A?% as A — 0. The amplitude V and critical
value v, are directly calculable by known Padé approxi-
mant techniques!®3%¥ from existing series expansions
to a reasonable accuracy. It is to be noted that the
scaling properties* of the solution [see Eq. (6.9) as
an example] are such that a finite, nonzero, two-point
Schwinger function results when the scale factor intro-
duced in (8. 3) is remembered. It will be observed that
the results obtained here are independent of g. If we now
consider coupling-constant renormalization, it is
plainly convenient to use

g':gA‘l"d (8.15)

as the renormalized coupling constant for d = 4. In this
way, if we again think of mZ2A® of the order of unity, the
representation (8. 4) becomes a continuous-spin Ising
model. The properties of this model are widely be-
lieved *® to be very similar to the spin-3 case. We now
see that what we have found for g finite, is the limiting
behavior as the renormalized coupling constant di-
verges, and hence, for d =4 we find that the strong
coupling limit of g: ¢*: Euclidean Boson quantum field
theory is exactly given by the behavior in the high-tem-
perature part of the critical region of the spin-3 Ising
model.

We next discuss the calculation of mass and coupling
constant renormalized g: ¢*: theory in d = 4. The com-
putational technique is to expand the quantities in (8. 2)
in a power series in the parameter X we have introduced.
For small, but nonzero 2, it should not be difficult to
show that the series converges.?* Now if we expand
(8.4) in powers of x as

Z « f_: f 11 {dy, exp[—'(émﬁ A%+ d)?
- g'(Jh— 6C A2 2 4 3C2A-4) 4 AR-D/2p 4 1
XU+O/ID T o
+ (Az/z') Z‘; Z:/ d)rd)ﬂb d)sd)sw’ Tty (8 16)
r, $,0’

then the ¢’s are all independently distributed. If h is
zero, then any term in (8. 16) which contains any ¥, an
odd number of times vanishes. The effort of analyzing
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our problem is greatly reduced by means of the finite
cluster method* introduced by Domb ¢ and proven by
Rushbrooke. *¢ The basis for this method is the theorem
that if all the spin weight distributions are identical,
then

an-(G):; T, .f(1), (8.17)
where the summation is over all unlabeled, connected
subgraphs 7 of the graph G. Only basic graphs with
single lines are included. By Z_(G) we mean (8. 4) with
a term Y., for every line in G and an integral over i,
for each vertex in G. The function f(7) is independent
of G and depends only on the subgraph 7. The matrix

T, , is the number of distinct ways an unlabeled sub-
graph T can be (weakly) embeded on G such that every
line of T corresponds to a line of G. This data has been
extensively tabulated by Baker et al.*’

If the spin weight distributions are not identical, then
(8. 17) generalizes to
InZ (G)= 2, f(7), (8.18)
1CG
where the summation is over every unlabeled connected
subgraph 7. Of course (8.17) and (8. 18) are tautologies
as so far stated. Their content comes in the properties
of the (7). If we compute
an ;AT |
=2
L Ce Y

. (8.19)
ahrl T, }h:O

o, 20

2 T, h=0

then the summation only goes over those 7 which con-
tain the points (r,, ..., r,) as the other f(7) are inde-
pendent of those h.'s. If we truncate the expansion

(8. 16) at the vth term in A, then to this order all proper-
ties of Z_ are given exactly in terms of the embeddings
of up to v line graphs. Consequently, as Rushbrooke’s
methods involve formal identities, (8.18) must also

hold through the vth order term in X when only graphs of
v lines and less are considered. Therefore we must
have

f(n)= ; froaA" (8. 20)

when 7 is a v line graph. Thus we can expand any
Ursell function through order A\ by considering only v
line graphs. If we denote the set {r,,...,r,} by A, then
by (8.19)

U G= %

ACTCeC

N(A, 7; G) f,(7), (8.21)

where the summation goes over all 7 which contain the
set A as vertexes and are embeddable on G. In (8.21)
N(A, 7; G) is the number of ways of embedding on G all
unlabeled subgraphs 7 with exactly » odd vertexes which
lie on the vertex set A of G. The functions f (7) are in-
dependent of G. By repeated use of (8.21) on finite
clusters we may successively compute the required
f.(7). By considering only subgraphs of up to v lines we
may compute the series expansions thru order \”.

The evaluation of these functions will depend on the
parameters of the theory only through the vertex
weight functions
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_ L2207 expl- (3mia? + d)g? - ga*4(y* - 6CA*) | dy

Wn= T expl~ (2mZAT + A — gAYyt — 6CATEYE) | dp

’

(8.22)

where 7 is the number of lines at a vertex. These w,
vanish if n is odd. Thus the restriction to even order
vertexes in (8. 21) except where the appearance of a ¥
from the set A gives an initial odd contribution.

Following Fisher and Burford!* we introduce for con-
venience the effective range of correlation

52:1\25#2/(261#0), (8 23)
where the p’s are defined by (8.2). In general we expect
(8.24)

where for d >4, v=13, with possible logarithmic cor-
rections for d=4. The analysis proceeds as above. We
analyze the series expansion for A, and determine X
and v as functions of mZA?® for fixed g’ and A. One ex-
pects v to be independent of m3A%, From the asymptotic
expansion near x =%, we fix A(A=1)=(mA)™?, and again
solve for mZA?, Having done this we can then explicitly
determine the asymptotic behavior of, say T(k,,k,,k,),
Eq. (8.2), as A —_, and by substitution obtain the
limiting behavior of the scattering amplitude as A —0.

Ac(l=a/A)?,

For 2 <d< 4, in principal the analysis proceeds as
outlined above. The difficulty is that the coefficient of
g vanishes as A — 0, and so the critical fluctuations
must indeed magnify this vanishing effect to produce a
finite result. The hasty conclusion that only a free field
theory results does not coincide with the results of
perturbation theory in these cases. Even though the co-
efficients are small if mZ< 0(4%*%), the normal ordered
product destabilizes the small momentum states and
works to induce cooperative behavior.

The arguments of the renormalization group approach
of Wilson 3% make it extremely likely that systems of
this type have a “universal” behavior shared by the
Ising model. Thus we expect**

(ma) o (mf-m3)™, (8.25)

where v=1 for d=2 and v=0. 64 for d=3, to impose
the normalization condition for a fixed value of g. The
empirical formula of Fisher and Burford™ for the
propagators is, in the limit A—0,

G(p)=[1+ a(py?/m®I 2 /[m*? + (p)?], (8.26)

where n=0.25, d=2, andn =0.06, d=3, and a=10"
for d=2 and 10" for d=3. A direct numerical evalua-
tion of the exact results in two dimensions has been
made by Tracy and McCoy. *° The calculation of higher
order correlation functions, i.e., the scattering func-
tion T of (8.2), should have their decay properties
determined by the closest pole in (8.26), their ampli-
tudes a function of the coupling constant g, and their
structure given by the appropriate long-wavelength,
critical-point limit of the “universal” Ising model func-
tion of the appropriate number of dimensions.
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APPEND1IX A: INEQUALITIES

There are a variety of inequalities that are most use-
ful in this work. We shall not, by and large, derive
them, but will catalogue them and indicate the conditions
germane to our needs required for them to hold.

We define an unnormalized probability distribution
for a system of “spins” by means of the factor

M M M
P(s):exp(%, K”sis].+;22his‘>iI_]l F(s)), (A1)
i = =
where we impose the restrictions that
K20, h; =20,
F{s)=F~s), (A2)

o< [ [ P(s) ﬁl ds, <,

In physical terms (A1) and (A2) imply that the energy is
lower if s,=s, than if s,=~s,. Therefore, one expects

EA(Sjkk... sflt);()’ <silz... Six);o, (A3)
which is Griffith’s*® inequality, and was proved for this
general case by Ginibre.* The j’s are nonnegative
integers and E, is the unnormalized expectation value
with respect to the distribution (A1). The brackets ( )
denote the normalized expectation value ((1)=1) with
respect to (Al). Again in physical terms, if we increase
any of the K, the correlated state is energetically more
favored so the correlation should increase, or
7 (8,8, =20. (A4)
oK, ; k1
This idea leads to the Griffiths, *° Kelly, Sherman 5! in-
equalities

iped iy in gt
O i AR ICAR N (A5)
where the ¢ and j are nonnegative integers, and the proof
for this general form is again due to Ginibre. *°

There are further inequalities due to Fortuin,
Kasteleyn, and Ginibre 5 which hold without the restric-
tion on the #; imposed in (A2). Suppose f(s,,...,s,;) and
g(s, ...,s,) are increasing functions of each argument
separately, then

(f&y=(f){g)

are the Fortuin, Kasteleyn, Ginibre inequalities.

(A6)

Recently, Lebowitz® has used (A5) and (A6) to prove
the following family of inequalities. We have, for this
family, in addition to restriction (A1) the further
restriction

F(s)=3[6(s = 1) +5(s + 1)), (AT)

that is, s =+1 are the only allowed values, and we have
a ferromagnetic spin-3 Ising model. In order to state
Lebowitz’s inequalities it is convenient to introduce a
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duplicate set of variables ¢ with a probability distribu-
tion identical to the 8, i.e., we use the normalized
measure

K (o, 8)=[P(0) P(s)]/[E (D). (A8)
Then, defining

g =3(0;=s), t;=30;+s),

w=[,00 b= 1t a9)
we may write the Lebowitz inequalities as

g,) =0, (A10)

(gctp) <{ge) t s (A11)

{Ged,) 24e) lap- (A12)

We remark that (A11) has the unusual property of
providing an upper bound on a higher-order correlation
function in terms of lower-order ones, and is a gen-
eralization of the Griffiths, Hurst, Sherman®* inequality
which shares this property.

We may weaken the restriction (A7) very considerably
by combining the following simple observation with the
method of Simon and Griffiths. % The Lebowitz in-
equalities are linear in every factor ¢, and ¢,. Thus, if
we sum the inequalities over many choices for, say,
the first factor, we may replace it by

qp%(jz 0- % s,),

cA jEA

(A13)

and so on for every other factor. Thus (A10)—(A12) hold
equally well if we replace the o, by sums of ¢,, or
equivalently replace condition (A7) by
N
Fk(S) =

n==-N

(oia *§E‘7i=" exp(KUaioj) 5(s - n)> . (A14)

Now Simon and Griffiths °® have shown that by a proper
choice of the K, in (A14) we can approximate the
distribution

F(s)=exp(-a;s*-b,s? (A15)

arbitrarily well as far as expected values are concerned,
if a,>0, and b, is real. This distribution is the gen-
eralization we seek to treat g:¢*: o field theory. Thus
the Lebowitz inequalities hold as well when only
restrictions (A2) and (A15) are assumed.

Finally in this appendix we show that the generalized
Lebowitz inequalities imply the cluster property. If

SA: I S‘.’ (A16)

=4
then the cluster property says that the “truncated”
correlation function
(8,807 =(s, 550 =(5,)(Sp), (A1T)

which is necessarily positive by (A5), decays to zero
when the two-spin correlation function

u(A, B)= max (s;8, (A18)

JEB

does. First of all we restrict ourselves to zero mag-
netic field (#,=0, all £). Otherwise we do not expect
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u(A, B)— 0 even though the distance between A and B
gets large. In this case

(5, 85)07T=(s,550=0 (A19)

if the number of spins in A plus the number in B is odd.
Thus we only need to treat the case where the sum is

even. Let us therefore select « = A, and 8= B and de-
fine the sets

C={a,8}, D={d:dcAord= B, d+a, d+8}.
(A20)
Then (A11) can be written out explicitly as
2n<(IC[D>
=2 pgt)“_mns 1,0 (80 {0, at8) = (008 (0, U o]
a0
(00X Oy 8 (S ay) = (550 (5,)]
= (84,0 (Sp,0 8 (CATNTPESCHIMICA
- <0“1U Ol> <0b2> Ksazu 5,U e <s¢2> (s U B>] (A21)

+ [<Sb2U a2> - <sb2><sa2>] [<Ua1U bIU czU B>

- <0a1Ua><cb1U B>J - [<sa2U »,U P

- <Sa2> <3b1U 3)][<0alu 8 e <°a1U a><0b2>]}
<2(0,0,) ),

where # + 2 is the number of sites in A and B, and
where use was made of the formula

27 = 2, 0 0,5 S, . (A22)
D i partitions %101 %2 B2
ajl ) ag=a
byl by=b

When we observe that the first term in the summation
(for a,=b,= ¢, the empty set) is exactly (0, 0,)7, then
we observe that by transposing all the remaining terms
to the right-hand side of the inequality in (A21) we have
reduced the cluster property to the sum of terms which
either are explicitly proportional to a term of the form
(0,05, or involve the cluster property for a smaller
number of sites in the two sets A and B. As we can
establish the cluster property directly and obviously for
the two-spin case (0,0,)T=(0,0,), as {0y =0, it follows
by induction for any finite size sets A and B. In fact by
repeated application of the above reduction process, we
can establish ‘ :

<UAGB> - <OA> <OB> < Z [1—1 <Ux0n>]; (A23)
where (i) all spins occur somewhere in every term in
the summation, and (ii) in every term in the summation
there is at least one factor of the form (0,05, a=A,
and 8= B. It is convenient to write out the first of the
inequalities (A23)

(0,0,0,0,)—0,0)(0,0p)
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<(0,09(0,0,) +{0,0,X0,0,) (A24)

which both illustrates (A23) and is itself useful.

APPENDIX B: GENERALIZED PADE APPROXIMANTS

For the convenience of the reader, we summarize
some of the properties of the generalized Padé approxi-
mants '®+1° gspecialized to our case. These approximants
have been called Gammel-Baker approximants and, in
the special case of interest, the Padé-Borel summation
method.

Suppose a function can be represented as a Stieltjes
integral

#(2)= [ exp(~ z5) de(s), (B1)

where dg 2 0. We can form the approximants to g(z) as

B, ()= a, exp(-z0,),

i=1

B, (2)=qa,+ i o, exp(—20,), (B2)

j=1

where the a’s and ¢'s (different for the two approxi-
mants) are determined by the equations

2(2) - B, (2)=0(z"),

&(z) = B, (2)=0(z*™1). (B3)
Then these approximants have the properties
B, (z)<B,, ,(2)sg(z) <B,, (2)<B, (2) (B4)

for real, nonnegative z. For every such z, the B, ,(z)
converge to a limit function as n— «, as is also true of
the Bmo(z). These limits need not be the same, but as
we implicitly assume finite coefficients in the formal
power series for g(z), it follows from Carleman’s
Theorem (see Sec. 7) that if

2 g, < e (B5)
»

for suitably regularized g,, then there is a unique limit
function for both the B, _,(z) and the B, ((z). That is to
say roughly that if the g, don’t diverge more than (p!)
we have a unique limiting sum defined by this method of
approximation.

We can relax to some extent the condition that the
lower bound in (B1) be zero. Consider

Mz)= f: exp(~ zs)do(s) = exp(Mz) [; exp[- z(s + M)]

X do(s). (B6)

‘We can apply the lower bound (B4) to the right-most

integral as it is of form (B1), and thus using (B2} and
(B4)

h(z) = exp(Mz) jié a, exp(- 20))
=35 a, expl-z(o, - M) = B, ,(2), B7)

where the last equality follows by the uniqueness of the
approximant. It will be noted that the upper bound is not
form invariant and does not continue if we extend the
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limit of integration. We may, for the lower bound,
easily take M ==, by a limiting process.

APPENDIX C: CONTINUITY OF m IN g: ¢*: THEORY

In this appendix we take advantage of the fact that the
Lebowitz inequalities hold for g: ¢*: theory to prove
that the infinite volume limit m(m?) is continuous. This
property, together with the results of Sec. 6 establish

— Al Z <¢r¢u¢f> - <¢r¢a><¢f) .
t (Pe0y) IT =81

(C1)

Since, by (5.1), the interaction gives a field distribution
function for which we may apply the inequalities (A24),
we may bound Eq. (C1) by

am(L) (Prde)(Psde)

the mass renormalizability of the theory. When the 0< amZ <244 :E (.601r =51 (C2)
system size L is finite, m(L) is automatically con- Lo
tinuous, as the minimum in the defining equation (6. 14) Now by definition (6. 14)
is assumed for some r and s, and this term is not only
continuous, but even differentiable. The plan of the (b= exp[- m(L)]Ir - s| (C3)
; 9 T A e r_s)| @2’
proof is to supply an upper bound, uniform in L, for the
derivative of m with respect to m3. From (6. 14) we and for all other pairs
compute, if r, s is the minimum term,
exp[~m(L)lu=-v|]
< C4
a;no"1|r..s|(d'1)/2 ] am(L) <¢u¢v> A+motlu_vl(d-l)/2 ( )
[1 A+m®|r=s| @2 ] amg Thus by using (C2)—(C4) we obtain the bound
|
am(L) a5 A+melr=s| 4D/ explm(L)(Ir=sl - lr—t| - |s-t])]
0 Gnz < 2 T @ Tt E DA + o (5= (@) 7= 5] (C5)

If for the minimum term |r—s| is not large, then (C5)
gives an immediate finite bound. If, as is likely, |r-—s|
tends to infinity as L does, then a little calculation is
required. Let us consider the hyperellipsoids on which
the argument of the exponential in Eq. (C5) is constant.
They have their focii at r and s. If we parametrize them
by ¢, the length of the semiminor axis, then the semi-
major axis is

(2 Hlr-sprastr=s] 4 /le-s]+, (cO

where the right-hand side is valid if £ «< |r—s]. In the
limit of large but finite |r~ s|, if we replace the sum-
mation in (C5) by integration, and integrate first along
the direction of the major axis of the hyperellipsoid, we
may reduce the dominate term in (C5) to be proportioned
to

m-e {42 expl|-2 2/ - dg

p[ m(Lg /’r S|):'mm, (CT)
(o]

where the constant of proportionality is dimension de-
pendent, and use has been made of the decrease in
volume of a hypercylindrical slice near the ends of the
hyperellipsoid to offset the decrease in the denominator
in (C5). The form (C7) is correct for d=2; for d=1a
separate calculation leads to the desired result. For
all higher values of d, (C7) is correct. We conclude,
therefore, that, integrating (C7),

om(L) !
Gt < Lo/ l(L)] = e,

where I', is independent of L and finite. Thus

0< (C8)

0
0= Fy [’WL(L)] a+ (4+1)/2 ¢ rd’ o> 0,
is uniformly bounded for all L, and hence
[m(L)]e+@+/2 gnq [therefore m(L)] is a continuous

function of m?2.
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APPENDIX D: NELSON'S RECONSTRUCTION
THEOREMS

In this appendix we will discuss briefly a theorem of
Nelson® on the construction of quantum field theory from
Markov field theory, and show the relation of his result
to our case. In particular we will confine our discussion
to the g: ¢* :, theory where we have fuller results.
Nelson® has already treated the g: ¢*:, theory in his
discussion of the free Markov field. Osterwalder and
Schrader” have given a set of Euclidean axioms which
imply the existence of a quantum field theory in the
case d=4; their axioms can be verified for g: ¢*:,
theory. The connection with relativistic quantum field
theory in Minkowski space is made directly by analytic
continuation on the time variable from real in the
Euclidean-space framework to pure imaginary in the
Minkowski-space framework. By a Minkowski space we
mean a Euclidean space where we replace the usual
vector product

d
Xy=2 X,

n=1

by the Lorentz invariant formula
d-1
(xa _}’) =XgV4— Zl XnYpe
n=

The two products can be related to each other by letting
the dth component become pure imaginary and changing
the sign. We distinguish timelike vectors by (x,x)> 0
and spacelike vectors by (x, x)<0. There are two
separate parts to the set of timelike vectors which may
be characterized as x,> 0 and %,<0. The idea of
causality tells us that unless a point lies in the forward

light cone [closure of all x,>0, (x,x)>0] of another
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point, its behavior is unaffected by that of the other
point. This principle is reflected by the vanishing of
the correlation functions in the appropriate regions.

One must then establish the necessary properties,
that is the Wightman axioms, *® of the analytic continua-
tion of the Schwinger functions. The two properties
which are the hardest to establish for the limit of the
Euclidean lattice theory are the rotational invariance
and the vanishing outside the forward light cone of the
Wightman functions (analytic continuation of the Schwin-
ger functions).

In order to establish these results, Nelson makes use
of the transfer matrix which adds a (d — 1)-dimensional
hyperplane to the system. For clarity, we write, in the
notation of Sec. 2 and (5. 1), for finite L and A,

T,=exp(- 184 3 12 (0r0- 6.787]

r {6}

e+ 0t) PO PO ) oD

where the ¥ is over a hyperplane, and 8’ is perpendicu-
lar to that hyperplane, The normalized transfer matrix
is

T="T,/spr(T,)

where the spectral radius of an operator is defined as
(independent of the norm)

spr(A)=lim [|A"]]*/".

n~w

(D2)

(D3)

However, for free and Dirichelet boundary conditions,
the limit in Eq. (D3) is substantially the limit we have
shown to exist (as A>0) in Eq. (4. 33). The difference is
that in (D3) we let L — « in only one dimension, but the
proof also works for this case. By constructioa T is
Hermitian and positivity perserving, that is, if u is
everywhere positive, the Tu is also. Further, by con-
struction, spr(T)=1, so that every eigenvalue is real,
nonnegative, and less than or equal to unity; therefore
there exists a unique, Hermitijan, positive operator H
such that

T = exp(— AH). (D4)

We may use this representation to re-express for
Dirichlet boundary conditions the Schwinger functions
which we had shown at (4. 41) to exist. Since the order of
the r, is immaterial to the definition of the Schwinger
functions, we can, without loss of generality, order
them by their time, or dth, component. Then, if 7, is
the time component of r;, and p; is r; with the time
component set to 7,, we may write

SAry oo x,) =lim (@, expl- (1o~ T)H] B, -

xexp[—(7,- 7,1 )HI®, ) (D5)

n
where (). is the normalized expectation over a system
of size L with Dirichlet boundary conditions. The
analytic continuation in form (D5) follows because when
the 7, become pure imaginary lapproached from
Re(T,-7,,)>0], by the properties of H

|exP[_ (T,"" Ti-1)H]| = 1:
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and so as § _(p,,...,p,) has previously been proven to
exist in (4. 41), so also can its analytic continuation to
imaginary time be established. Thus the Wightman
functions r, = (p , i7,) are defined for the theory.

As we have shown in Sec. 7 for g: ¢*: theory, the
Schwinger functions defined by periodic boundary con-
ditions and Dirichlet boundary conditions are the same.
Therefore, since it is an exact property for periodic
boundary conditions, translational invariance in multi-
ples of the lattice spacing holds. Consequently, we may
write

SAry, .o, r)=S(r;=1y ..., T, ). (D6)
If we complete the Fourier transform
S{py ... ,pn):f / dr,---dr,
X exp (—z’ 2. D r,.> Sry=ty ...,r ,—T,)
i1

n

:\/' [ dr - dr
X exp{_i[pl,X(rl—r2)+(p1+p2)-(r2—r3)"'
r, -

-r)

P Tpy— T,

+2.p,r, }S_(
i=1

n
=1

= (2m) 6(1'2 pj>

XS-(Pl,p1+pzy---,p1+"’+P,,-1)- (D7)
Now since H is a positive operator, the Fourier trans-
form of (v, exp(iTH)u) vanishes on the negative half-

axis. In particular, the Fourier transform of

(05, " &, €XDUTH) &, ** @, ) (D8)

vanishes on the negative half-axis so that
S.(a,...,q,-..,4,,)=0 if there is an imaginary time
component for the jth argument. As j is arbitrary, this’
result holds for all j’s.

As we discussed in Sec. 7, rotational invariance is an
unproven consequence of the approach to the critical
point implied by mass renormalization and the limiting
process &4 —0. In so far as analytic continuation in the
coupling constant g will carry us, this invariance is a
rigorous result as it holds term-by-term for the
limiting coefficients in the perturbation series. This
invariance amounts to the result that rotations in d-
dimensional Euclidean space leave the Schwinger func-
tions invariant. Since the inner product for Minkowski
space is the analytic continuation of that for Euclidean
sapce, Lorentz invariance without time reversal follows
by analytic continuation from rotational invariance,
since we have already established the existence of the
continuation.

By the Lorentz invariance and the argument at (D8)
§_(ql, ...,d,,)=0, unless each q, is in the forward light
cone. Thus we have the Wightman properties>°'* of (a)
relativistic invariance and (b) the spectral condition. If
we let W(x,,...,x,), with x, in Minkowski space, be the
Wightman functions defined above as the analytic con-
tinuation of (D5), then (c) the Hermitian property

Wixy, oo, x)=WHx,, .. (D9)

.y x)
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follows easily from the definitions and random variable
nature of the ¢,. (The * means complex conjugate. )
Also (d) the local commutativity property

WXy, ooy Xy Xy ee e ) =W, o Xy Xy o0y %),

(D10}

when x; and x,,, have spacelike separation, follows by
using Lorentz invariance to put them in the same hyper-
plane, and by using the commutativity of the random
variables ¢,. The same procedure gives (e) the cluster
property for space-like separations directly from the
Eucledian cluster property of Section 7. Finally (f), the
positivity property,

n n

hEon“.f dx, - dxjdyl '"'dykfﬂxu ) “’xj)
XW(X},-..,xlyyl, .. "yk)fk(yl?'--yyk)zo, (Dll)

follows by the properties of W in terms of expectation
values.

APPENDIX E: COMPLEX COUPLING CONSTANT

In this appendix we use the exponential decay proper-
ties of the free-field correlation functions to bound the
Schwinger functions for small complex values of the
coupling constant in the closed right half-plane,

Re(g) = 0. Similar results have previously been obtained
by Glimm et al.”® and Eckmann et al.3 for : P(¢),:
theories. Although their arguments can be applied to the
present case, the transcription is quite long and not
completely transparent. Basically, however, their
proof is dimension independent except that certain com-
binatorial estimates must be changed, but these changes
do not affect the validity of the proof. Also, all the
special properties of the interaction in two-dimensional
space-time, which they used, hold in any number of
dimensions, provided A > 0.

We present a different argument. Consider the
Schwinger function

s _ LI T (e=s ¢0) exp(=A.) NiiNexp- g(P(¢)) + K)|d¢,}
B 135 exp(— A) EMexpl- g(P(¢,) + K)]do,}

(E1)
in the notation of (2.9), (5.1), and (5. 2). If we write
expl— gP(¢,)] =1+t {exp[-g(P(¢,) + K)] - 1}

=1+, f,
for {,=1, then

(E2)

0<|f,|<1, Re(g)=0 (E3)

by the definition of K. Also, for a fixed value of o
fy—~0as g—0, sofor g small, the f, are in a sense
small. With this notation we may rewrite Eq. (E1) as

g - L2 | (Meep o)) exp(=A) TR + 441y doy)
B 132 [exp(- APl +1,1) do,]

(E4)

Let us now consider moving from the free-field case
(£,=0) to the P(¢) case (¢,=1) by changing one tyata
time from 0 to 1. If we change any one, we may write
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SB(tk: 1’ tj:()s j¢k):<nr€3 d)r)-

+ <fk [_I!EE ¢r>- - <fk>-<Hr€B (pr)-
1+<{fy-

(E3)

where (). is the free-field expectation value with
Dirichlet boundary conditions. The second, or correc-
tion term, in (E5) can be small for two reasons. First,
by the exponential decoupling of the free field, if k is
far from the set B, then a factor exp(-m,lk— B]) occurs
where |k — B| means the distance between k and the
closest point of B. Secondly, as we can make |f,| as
small as we please by selecting |g| <w and Re(g) =0
with probability 1-¢, and since it is bounded by 1 every-
where, we can control (f,)_, etc. In order to compute
the change in S; from the free-field case, we apply

(E5) repeatedly. Clearly, by the exponential decoupling
the sum of all first-order corrections in f, behaves like

G= [ k°dkexp(—m,|k-Bl), (EB)

where ¢ is dimension dependent. The sum of the second-
order corrections will have the structure®

1

o k"dkfj"djexp(—mo|k—B\)

X (exp(-my|i = B|)+exp(—m,|j-k[)) =G (ET)
and so on for the higher-order corrections. The only
remaining problem is to obtain a lower bound on the
denominators

M (1+f,). { . (E8)
=0
This may be done by considering
(B, 7). (E9)

and by discarding the “gradient” term so that we may
write the decoupled bound, as

{0y,

>n (1 [1f;l exp(~ m3al ¢} do,
“s=n - Fat '

(E10)

where F is the normalizing factor per unit hypervolume
given in (2. 14). Therefore, repeated application of Eq.
(E5) generates a series of the structure

Zlen.ml,

which converges provided (0 < [¢g] <w, Re(g)20] w is
small enough. Note that the factors of #! in the nu-
merator from different terms as in (E7) and n! in the
denominator from the overcounting of permutations
cancel.

(E11)

We have not tried to put in the many steps to make the
above discussion rigorous, but only to sketch the
general pattern.
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The concept of minimal coupling, which leads to the Schrodinger equation of a particle in an
external electromagnetic field, is reformulated within the theory of complex line bundles. The possible
generalizations are discussed, and the case of the magnetic monopole is investigated with the help of

the new formalism,

INTRODUCTION

It seems that Dirac was the first who studied the
Schrddinger equation for a particle in an electromag-
netic field, which could not be described globally by
suitable vector potentials. He considered the magnetic
monopole and found that a quantum mechanical de-
scription could only be given, if the pole strength was
quantized.

In this paper we want to show that if the usual concept
of gauge invariant or minimal coupling is formulated
within the theory of complex line bundles, the conditions
under which a well-defined Schrodinger equation exists,
can be completely classified. As an example we will use
the mathematical techniques provided by bundle theory
to reinvestigate the magnetic monopole.

1. MINIMAL COUPLING

Assume we are given an electromagnetic field de-
scribed by the field tensor F which satisfies Maxwell’s
equations and hence is a closed two-form. In general,

F will have certain singularities; that is, it is only de-
fined on a subset D, of R*, which we assume to be open
(and hence a smooth manifold). For this reason we can-
not expect F to be exact, i.e., of the form F=dA where
A, the vector potential, is a globally defined one-form
in D, (d denotes the exterior derivative).

Next, recall how the quantum-mechanical coupling of
the motion of a charged particle to the external field F
is achieved. Consider the free Schridinger equation
(o, denotes derivative with respect to the time, 9, with
respect to Cartesian space coordinates)

3
19, =~ ﬁ 2, %% (n=c =1, M particle mass).

i=1

(We could as well use the Dirac or Klein—Gordon
equation. ) Replacing 9, by

V,=:9,+ieA, (1=0,1,2,3) (e particle charge),
(N

we obtain the equation
1 3,
iV ==~ >, V2
Wol=—oar 4 Vi¥ )

which is gauge-invariant; i.e., it does not change under
the substitutions

¥ — ¥ exp(—iexr), A, - A+
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for arbitrary real functions x. The particular way in
which the vector potential appears here (and in other
comparable equations like Dirac’s, etc.) is known as
minimal coupling.

Equation {2), which now describes the motion in the
external field F, should be well defined at least in the
region D, where F does not contain a singularity. But
in this case one must obviously insist on the global
existence of the vector potential Aon D, i.e., Fis
exact. However, we will show that if the mathematical
interpretation of Eq. (2) is slightly changed, it remains
meaningful even for a larger set of two-forms F, name-
ly those for which eF/2r represents an integral
cohomology class.

By virtue of the ideas of geometric quantization
(see Refs. 1—6) the new interpretation consists in re-
garding ¥ as a cross section and V as the covariant
derivative in a complex line bundle L over D, with
curvature ieF, (Vu then denotes the covariant derivative
in the direction of the vector field d,.) The mathemati-
cal definition of these notions is the subject of the next
Section.

2. COMPLEX LINE BUNDLES

A complex line bundle is a collection L =(E, 7, M),
where E and M are smooth manifolds and 7n: E—M is a
smooth map satisfying the following conditions:

(1) For every x € M the set F,=7"'(x) (the fibre over
x) is a one-dimensional complex vector space.

(i) There exists a covering of M by open sets U, and
a family of diffeomorphisms ¥_:U,%XC* 7-(U,), which
restrict for every xeU_toa (complex) linear iso-
morphism

¥, c:- F..

Every such family (¥,,U,) is called a trivialization of
the complex line bundle L.

The simplest example of a complex line bundle over
a manifold M is the product M X where 7 :MXEC —~M is
the obvious projection. This is called the tvivial bundle.

A cross-section in a complex line bundle is a smooth
map ¢:M —~E such that reo(x)=x, i.e., ¢ carries every
point x € M into a vector of its fibre. (Therefore, one
can define addition of sections and multiplication of
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sections with functions on M.)

A Hevmitian metvic is a map (, ), which assigns to
every pair of cross sections 0,, 0, a function (0,,0,),
linear in 0,, antilinear in o), with (0,, 0,); =(0,, ), and
such that

(@0, 0 =0y, 0y,

for arbitrary functions ¢ on M. (, ), is called positive
definile if {0, 0), 20 and (0, 0), =0 implies that c=0.

A linear connection in a complex line-bundle L is an
operator V which assigns to every pair o, X (o a cross
section, X a vector field on M) another cross section
V.0, called the covariant derivative of 0 with vespect to
X, which is linear in X and ¢ and satisfies for arbitrary
functions ¢ the conditions

V. x0=¢ V0,
Vy 90=¢V, 0+ X(p).o0.
[(X(¢)) denotes the derivative of ¢ in the direction of X. ]

Let V be a linear connection in L, X and Y be ar-
bitrary vector fields on M with Lie product [X, Y], and
let o be an arbitrary cross section. One can show that
there is a unique two-form R, called the curvature
form, on M such that

RX,Y)o=V,V,0-V . V,0-V , 0. (3)

The proof follows directly from the fact that the right-
hand side of this equation is function-linear and skew-
symmetric in X and Y. The Bianchi identity states that
this two-form is closed, dR =0, as can be verified from
the definition of R.

Thus R represents a de Rham cohomology class (R]
of M. Using Cech cohomology theory one can show that
the class [R]/27i is integral. Conversely, we have the
following:

Existence theorem: Let M be a manifold and let & be
a closed two-form on M such that & /27i represents an
integral class. Then there exists a line bundle L over
M and a linear connection V in L such that the corre-
sponding curvature form coincides with &. Moreover,
if M is simply connected, then L and V are uniquely
determined up to strong bundle isomorphisms. Finally,
if & /27i is real-valued, then L admits a positive de-
finite hermitian metric (, }; such that

X({0,, 05 1) =(V 405, Op)p +(03, V050, (4)

for arbitrary cross sections o,, ¢, and vector fields X.
This metric is determined up to a positive constant.
(For the proofs see Ref. 1.)

3. THE GEOMETRIC INTERFRETATION OF
MINIMAL COUPLING

We return now to the interpretation given to Eq. (2)
at the end of the first section. Remember that we as-
sumed F to be exact. Now regard ¥ more specifically
as a section in the trivial bundle D ;X€ — D . In this
case we can represent ¥:D,—~ D XC by a function de-

noted by the same letter:
¥(x) = (x, ¥(x)),

x&Dg.
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The most general form of V,¥ in a trivial bundle is
given by

Ve W(x)=(x, ¢(x)),
¢ =BX) . ¥+ X(¢),

where B is an arbitrary one-form on D,. This implies
that R =dB [R curvature form, compare Eq. (3)]. If we
put B=1ieA, we recover the coordinate-free version of
Eq. (1) and find the important relation R =ieF which was
anticipated in the first section.

Further, by the uniqueness part of the existence
theorem of Sec. 2, the trivial bundle with the above
connection is the only complex line bundle with curva-
ture ieF, provided that D, is simply connected. This
will be assumed for simplicity, though even in the non-
simply-connected case there is a complete classification
of complex line bundles over D, (See Ref. 1. This is
also of physical interest because it explains flux
quantization). The only remaining freedom, namely
that the vector potentials are determined up to gradients,
is as usual compensated by the gauge-invariance of
Eq. (2). Thus the case when F is exact has been shown
to fit completely into the line bundle description of Eq.
(2). Now one observes that this description has a wider
range of applicability, since it extends to the case when
eF /27 is not exact but represents an integral cchomology
class (integrality condition). In fact, though the vector
potentials cease to be defined globally on D, the
operator V_, when interpreted as the covariant deriva-
tive with respect to 9,, remains meaningful. It is no
longer determined by an explicit formula like (1) but
more indirectly by the condition that V has curvature
R=ieF.

This is sufficient to construct L and V provided the
integrality condition is fulfilled.

Conversely, if the relation R =ieF between the elec- |
tromagnetic field and the curvature form of a complex
line bundle is valid, we get automatically the homo-
geneous set of Maxwell’s equations as a consequence of
the Bianchi identity for R. Moreover, the existence
theorem tells us that eF/27 defines an integral co-
homology class. This is stated more explicitely by the
condition

fa eF/21c Z

for an arbitrary closed two-dimensional surface in D .
(For the relation between the integrality condition and
charge quantization, see Ref. 6.) Furthermore, we can
use the Hermitean metric (, ), in L which is determined
by (4) up to a positive constant, to establish the usual
probability interpretation of quantum mechanics: The
set of sections obeying Eq. (2) is made into a Hilbert
space with scalar product

(o), crz):ftO CAT-ATR
The integral in this formula is taken over the three-
dimensional space part of D, at time #,. This definition
can be shown to be independent of the particular choice
of t, as a consequence of (2) and (4). If the section ¥ is a
solution of (2) normalized to (¥, ¥)=1, we can as usual
interpret (¥, ¥), (x) as the probability to find the
particle at the point x € D,.
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Of course, the case when F is integral but not exact
will present many more difficulties than the case when
F is exact. Even before one starts to solve Eq. (2)
these difficulties start with the construction of the line
bundle and the covariant derivative. This will now be
illustrated for the magnetic monopole.

4. THE MAGNETIC MONOPOLE

As an example which will really provide us with non-
trivial line bundles, we want to discuss the quantum-
mechanical motion of a charged particle in a magnetic
monopole field. This problem has been treated by
several authors (see Refs. 7T—12) but without replacing
wavefunctions by sections in a complex line bundle. As
a consequence one meets in the older literature vector
potentials with unphysical singularities (the Dirac string)
which only arise because of the improper use of co-
ordinates. This can be avoided completely by use of the
bundle formalism.

The magnetic monopole field is described by the two-
form F=)w, where X is a pole strength and w is given
(in Cartesian space coordinates x,) by

w=|x|¥(x, dx, Ndx, + x,dx, Ndx, + x, dx,Adx,).  (5)

F is defined on RXR®. Since it is time-independent, we
are essentially left with the problem of finding line
bundles of the form R XL RXR3 (R®=R®-0) where [
denotes the identity map and L % LR3isa complex line
bundle over R®,

Therefore, we set V=20, in Eq. (2). Next, we elimi-
nate the time-dependence by the ansatz

) = (¢, exp(—iEL) hy(%)),

Then Eq. (2) yields the stationary equation for the
cross section ¥ : R°— L

teR, xcR®

- 13

1:@0:—7;1) Vi, (6)
where V, denotes the covariant derivative in the direc-
tion of the vector fields 8/ax, (i=1, 2, 3).

We still have to ensure the existence of line bundles
with curvature ieF. In our particular example, the
condition of the existence theorem in Sec. 2 reads

fsz eF/2nc Z

where S? is a sphere in R centered at the origin. A
simple calculation shows that this is equivalent to

A=-m/2e, meZ;

i.e., we get line bundles with the desired curvature if
and only if the magnetic pole strength A is an integral
multiple of 1/2e. This amazing quantization of the pole
strength was first obtained by Dirac.

Applying the existence theorem once more and ob-
serving that R® is simply connected, we obtain for each
integer m a unique line bundle L over R® with linear
connection whose curvature is given by

R:—imw/Z.

This line bundle and the corresponding covariant deri-
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vative will be constructed explicitly in the next two
sections.

5. THE UNDERLYING PRINCIPAL BUNDLE

To describe the complex line bundles L, we start with
a single principal bundle over R® which is very closely
related to the Hopf fibering of $* over $*. First recall
the definition of the quaternion algebra. Let @ be a four-
dimensional vector space with inner product (, ) and
choose an orthonormal basis e, e}, e,, ;. Define a multi-
plication in @ by setting

e e,=¢, ee,—ee=e,

f=-el=e (i=1,2,3).

This multiplication makes @ into an associative division
algebra, with unit element ¢, the algebra of
quatevnions. The conjugate of a quaternion x =xe +
v3iAe;, A X €R is defined by
_ 3
x=Ae -2, e,
i=1

Next, let R® denote the subspace of ¢ generated by
ey, e,, and e, and let 7: @ —~ R® be the map given by

xeé(:Q—O).

Since (e, 7 x)) 0 and 7(x)+# 0 whenever x+0, 7 is indeed
a map from @ to R°. It is easy to check that this map
defines a principal fibration with fibre

(%) =xe.x,

S,={e;e=e(t)=ecost + ¢;sint, [<[0,2m)}
and that the right action of S! on @ is given by right
multiplication.

Now we can represent every vector field on Q by a
quaternion-valued function on @. The group action
generates a vector field K on @ given by

K, =xe,, xc@.
A vector field Y on Q is called hovizontal if
(Y_K)=0, xcq.

To every vector field X on R® there is a unique hori-
zontal vector field X* on @ satisfying

(dﬂ){X::Xr(r)’ xre Q'

It is called the horizontal lifl of X and is explicitely
given by

X¥==X,, -x-€ xeqQ. )
A straightforward calculation shows that if X and Y are
vector fields on R®, then

[X* V*], = 30X, V), K, (8)

where w is the two-form defined by (5). (The Lie-
bracket should not be confused with the commutator of
quaternions!)

6. THE BUNDLES L,

Fix an integer m and let ®, denote the representation
of S! in € given by

(I)m(ﬁ(t)) = E’([)m * Zv

€(t)=e cost + e, sint,

ze (T,
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(N =explit), (<]0,2m).
Then a right action of S' in X is given by
G () (x,2)=(xe, €™2), xec@, zeC.

This action defines an equivalence relation in QX(E as
follows:

(x,2)~(xe, €™ 2).
Let @ X, @ denote the quotient manifold and let
q: Q X — Q x @
be the corresponding projection. Then meﬂi becomes a

line bundle over R® and the projection p is determined
by the commutative diagram

QXCL gx ¢
Wl* Vo
¢ ~ R®

where 7, denotes the projection onto the first factor.
The complex line bundle L, = (@ %, &, p, k%) so obtained
is called the complex line bundle associaled lo the
principal bundle Q —R® via the rvepresenlation & . (See
Ref. 13.) This will turn out to be the line bundle we are
looking for. We still have to define a covariant deriva-
tive and to ensure that it has the desired curvature.

A complex valued function / on Q is called equivaviant
(with respect to the representation ®,) if it satisfies

[(xe) =€ ™7 (x),
Now we shall establish an isomorphism between the
cross sections in L,, and the equivariant functions in @.

To do so observe that the map ¢ restricts to
isomorphisms

¢.:C 2 pn(x)). xe Q

on the fibres. _Thus, if o is a cross section in L, then
a function f,: @ — € is defined by

Fo(x) = g (o(m(x)).

This function is equivariant and, conversely, every
equivariant funclion on Q corvesponds lo precisely one
cross seclion in L. Thus ¢ induces an isomorphism
q* from the cross sections in L, to the equivariant
functions in . (See Ref. 14.)

xe Q ee ST,

Using this isomorphism we can define a linear con-
nection in L by setting

V0= qt1X*4t0) (9

(X a vector field on R%). In fact, one easily checks that
the operator V satisfies the axioms of a linear con-
nection.

To compute the corresponding curvature, let X and ¥
be constant vector fields on R*. Then we have by de-
finition |[compare Eq. (3)]

KX, Y)o=(V,V, -V, V,)o.

Setting ¢#o =/ yields in view of (9),
R(X, YYo=qg®x* v*|(f).
Thus, using formula (8), we obtain
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R(X,Y)o=$w(X,Y)g*1K(f). (10)
Now, since fis equivariant, it satisfies

K(f)=—1imf,
and so Eq. (10) yields

R(X,Y)o=~itm w(X, Y)o.

Since this holds for every cross section, we obtain the
formula

R=-4imw
for the curvature form of V, QED

Finally, we endow L, with a Hermitian metric which
has property (4). If o,, 0, are any two cross sections in
L, set

¢v,=q"te, =12,
and define
{04, 030, (V) =@, (%) @y(x) (11)

where v ¢ R* and x € 77'(»).

This definition makes sense because, in view of the
equivariance of ¢, and ¢,, the right-hand side of the
equation above does not depend on the choice of
xeny). If Vis given by (9) it is trivial to check the
validity of (4).

7. SOLUTION OF THE SCHRODINGER EQUATION

In this section we shall use the machinery developed
above to solve Eq. (8) for the cross section ¥, in L .
Applying ¢# to both sides of (6) and setting ¢, = ¢*¥,.
we obtain with the help of (9) and (7)

_ 1 3 2
Log==our 2y Dl w0, (12)

where D; denotes the ordinary derivative in the direc-
tion of the horizontal lift

e Q
[compare Eqs. (7) and (9)].

er=— exe,/2 |x|?

Recall that ¢, is an equivariant function in @,

@ (x(cost . e + sint . ¢,)) = exp(— imt) ,(x),
xeq, (|0, 2m).
If 9,(x)@,(x) is to be interpreted as the probability to

find the particle at the point 7(x) cR? [compare Sec. _3
and formula (11)], ¢, must obviously be bounded on @.

For ¢, we try the ansatz
Qo) =f(x|*) - glx/|x]), xeQ,

with f a function on the positive reals and g a function
on the group of unit quaternions, that is the group
SU(2). We will need the angular momentum operators
Jyand K, ({ =1,2,3):

(Jlg) (7"0) - % ;'i(i— g(eXp(" tez)xo) ’ $=0°

~

d
= fioexplie,)) .

(K19 () = 5
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3
J= ) I8, x,eSU(2).
im1

Observe that [J,,,K,]=0. Insertion of the ansatz for ¢,
into (12) yields after a straightforward calculation
(r=1x1?, xo=x/1x1)
(ME f(r) + [ "(v) + 2f '(#)/7)g(%,)

= [(2g)x,) = (K3 ) (x ) [ F(#)/72.
This shows that g must be an eigenfunction of the opera-
tor J2 — KZ. Since g, is equivariant it follows that
K,g=-mg/2. Thus g must be an eigenfunction of J°.
From the representation theory of the group SU(2)
(see Ref. 15) we know that the eigenvalues of J? are of
the form j(j+1), j=m/21, Im/21+1, .... A complete
set of eigenfunctions is given by the Wigner coefficients
D{h_m/z of the irreducible representations of SU(2)
(see Ref. 15), n=—j, —j+1, ..., j.

We are now left with the radial equation
OMEf+f" +2f/v~[j(j+1)-m?/4]f/r?=0,

which was already obtained by Tamm (see Ref. 8).
Following his arguments we have to restrict the energy
E to positive values, for only under this assumption we
get solutions which remain bounded when ¥ tends to
infinity.
For positive energy two linearly independent solutions

are given by

fr)=7"3d, (V2ZME®), A=[(2j+17?-m?]'/?/2.

J,, are Bessel-functions (See Ref. 16). f. has to be
omitted as it blows up when 7 tends to zero. Thus a
complete set of equivariant solutions of Eq. (12) is
given by the following functions ¢Zi: Q—C:

O ()= [x [T, (V2ME [x[)D] o (/[ %)),

A=[(2j+ D2 -m?12/2, j=|m/2|, |m/2]+1, ...,

n==j, —-j+1, ..., j, E>O0.

Obviously, we get a complete set of cross sections
¥E7 in L, which satisfy Eq. (6) by means of the formula
(compare Sec. 6)

VE = g# (@),

These cross sections can be described in a different way
by means of local trivializations. Write (i=1, 2, 3)

v, ={v,ep

for v Ef\t3 and defi_ne tpe local cross-sections o, in the
principal bundle @ & R® as follows:

0. =(]y]es+ ) [2(]v] +3)]77,
where

veD,=R*~{x; x| +x,=0}
and

o.(y)=0.-y)e,,
where

.VED_ZF‘C?‘—{x; [x] —x,=0L
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Then D, U D_=R®. Furthermore, the following transition
law is validin D, N D :

0. (¥)=0,(¥) (= v,e + vaey) - (Vi +vE)HE

The cross sections o, induce local cross sections oY
in L, (compare Sec. 6) given by

ol(v)=qlo.(y). 1), veD,.
From this we can deduce the following identity:

U () = @5 (0,0)) -7(v), ¥E D,

What has been calculated in the older literature was
indeed the function ¢Z’c0,:D, —~ € which we may call the
local description of the section VEJ pecause it is not de-
fined on the whole of R°.

After having established the relation to former work,
we close the discussion of the magnetic monopole.

CONCLUSION

We have shown that minimal coupling of an external
electromagnetic field, which is not exact, to the
Schrodinger equation, provides us with a nontrivial
physical application of the theory of complex line
bundles. Once the language and the results of modern
differential geometry are adopted, the Schrodinger
equation can be described in a consistent way, i.e.,
without introducing unphysical singular vector potentials.
In the special case of the magnetic monopole the actual
solutions of the Schrddinger equation are even more
easily obtained and interpreted.
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It is proved explicitly that the classical n-dimensional isotropic harmonic oscillator is invariant under
U(n). Two new examples of higher symmetry are found. One is the n-dimensional free particle
which is shown to be invariant under a semidirect product which contains the »n -dimensional

Euclidean group as a proper subgroup.

1. INTRODUCTION

Certain classical systems exhibit obvious geometric
symmetry. For example, a particle moving in three
dimensions in a spherically symmetric potential has as
obvious geometric symmetry group the three-dimen-
sional orthogonal group O(3). There are also certain
classical systems for which the obvious symmetry
group is only a subgroup of some larger not-so-obvious
symmetry group. Such a system (and its Hamiltonian)
is said to exhibit higher (or accidental) symmetry, and
the larger group is called the kigher symmetvy group
or the dynamical group.

Oft-quoted examples of this are (for all n> 2) the »n-
dimensional Kepler problem, which for negative ener-
gies is invariant under O(n +1) and the n-dimensional
isotropic harmonic oscillator (henceforth abbreviated to
n-oscillator), which is invariant under U{). In both
cases the obvious symmetry group is just O(n).

But these systems are usually discussed in a quan-
tum-mechanical context, and in fact most of the re-
sults stated here have been proved only for the cor-
responding guantum-~mechanical systems {see Refs. 1,
2). Some proofs have been given in a classical mech-
anical context. Thus it has been shown (see Ref. 3) that
the classical three-dimensional Kepler problem is in-
variant under SO(4) [the connected component of the
identity of O(4)], and (see Refs. 4, 5) that the classical
two-oscillator is invariant under SU(2) [the connected
component of the identity of U{2)]. But to our knowledge
no explicit proof has yet been given for any of the other
cases mentioned that the stated higher symmetry group
is actually exhibited by the corresponding classical
system.

Such explicit proof would be of interest, for although
many authors [see for example Refs. 3{a), 6—9] have
worked on the problem of constructing O(x +1) and
SU{n) Lie algebras (i.e., generators) for classieal
systems, even if such are constructed there remains
[see Refs. 3(a), 6] the problem of finding the finite
canonical transformations generated. Indeed it is point-
ed out in Ref. 3(a) that if construction of a given Lie
algebra is possible for a given classical system, it is
necessarily possible for all classical systems with the
same number of degrees of freedom, due to the fact
that all 2n-dimensional symplectic manifolds are
locally isomorphic.

In this paper we use simple methods to find the
linear symmetry group {defined in Sec. 2) of classical
Hamiltonians of form
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n
Hlg,p, 1) =12(p?+ 1g®) (=2 real constant).
i=1

For p >0 this represents the n-oscillator, and after
identifying groups which are isomorphic we obtain the
group U(n). Although, as noted, this result has long
been “well-known,” it has not previously been proved
explicitly for general n. Our method is easier than
those in Refs. 4, 5.

We also get some completely new results. For u<0
we obtain the group GL () of real (#X#n) nonsingular
matrices, and for p=0 (representing the n-dimensional
free particle) if we include also g-translations we ob-
tain a semidirect product which contains the n-dimen-
sional Euclidean group E(n) as a proper subgroup.
Since the obvious symmetry groups in these cases are
just O(n), E(n) respectively, this proves that for all
n=1 the Hamiltonian Hig,p, 1) exhibits higher sym-
metry no matter what value u has.

In Sec. 2 we give detailed definitions. In Sec. 3 we
prove our results for the u+0 cases, and in Sec. 4 we
deal with the case ¢ =0, Finally in Sec. 5 we make
some brief remarks concerning quantum-mechanical
implications.

2. LINEAR SYMMETRY GROUP OF A HAMILTONIAN

Consider a holonomic classical system with » degrees
of freedom, described by canonical variables (g, p)
=(g1,+.+>Gy P1s--.,p,). Let Hig,p) denote its Hamilton-
ian (assumed not to depend explicitly on time), and let
2 denote phase space, the space of all points (g, p).

Let W=C"(). Elements of W are called dynamical
variables. For every f, g& W define the Poisson bracket
{f, ¢} by (see Ref. 10)

=g (L2 2E,

=2 \9q; 9P, ap, 9q,

A canonical tranformation (see Ref. 10) is a one~to-
one map ¥ from § onto £, which we shall write as

vilg, p) =@ p ) =gy, oo aps Prs e 27,
such that each ¢}, p;< W and
{at, ay={rip} =0, {al,p}t=5,. Gj=1,2,...,m.
§Y)]

We interpret a canonical transformation y as a change
of label of points of . Thus (g',p')=y(q,p) are new
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canonical variables labelling the point previously de~
scribed by (gq,p).

Canonical transformations in which the g, p; are all
homogeneous linear polynomials in the variables (g, p)
are known as symplectic tranformations. These are
discussed in greater detail below.

Let T’ denote the group of all time-independent canoni-
cal transformations, and Sp(x,R) the group (= subgroup
of T') of all time-independent symplectic transforma-
tions. We say that the Hamiltonian H(g,p) of our system
is invariant under y €T if the new Hamiltonian H'(¢',p’)
[i.e., corresponding to the new canonical variables
(¢',p")=vlq,p)] has the same functional form as Hig,p),
that is, if #'(¢',p')=H(q ,p’). But since y is time-in-
dependent, the new Hamiltonian is given (see Ref. 10)
by H'(¢',p")=H{g,p). Hence the invariance condition can
be written

H(q'rp’):H(qub)" (2)

Let S(H) denote the group of all y& I'" which leave
H(g,p) invariant, We say that the system (and its
Hamiltonian) has symmetry group S(H), or is invarviant
under S(H).

In what follows we use = to denote group isomorphism,
and we will often find it convenient to identify isomor-
phic groups. For example, if S(H)= 0(3) we may find it
convenient to say H(g,p) has symmetry group O(3).

As mentioned in Sec. 1 we can often spot S(H) geo-
metrically, but sometimes we obtain only a subgroup of
S(H) this way. Note that if H(g,p) itself generates global-
ly defined canonical transformations, then (see Refs.

11, 12) H(q,p) will be invariant under these transforma-
tions (which can be considered as elements of ' since in
this situation we can regard time ¢ merely as a real
parameter), and hence S(H) will be nontrivial.

In fact S(#) may be quite large [cf. (23) below], and
for this reason we find it convenient to introduce the
group L(H) of all y € Sp(n, R) which leave H{q,p) in-
variant, We call L(H) the linear symmetry group of
H{q,p).

It if often assumed tacitly that S(H) =L(H), but this
may not be so [ef. (23) again]. In fact it should be noted
that, provided we keep to time-independent changes of
label, S(H) is independent of the canonical variables
(g, p) chosen to describe our system, but L(H) is not.
Fortunately this does not affect any of the arguments or
conclusions which follow.

In Secs. 3 and 4 we find L(H) when

H{g,p)=32, (p3+ uug?) (u= a real constant). 3)

n
i=1
This H(q, p) generates globally defined canonical trans-
formations no matter what value i has. In fact they are
symplectic in each case and thus (from previous re-
marks) elements of L(H).

Now the symplectic condition can be expressed in a
convenient manner if (as we will often do from now on)
we denote points of 2 by (2nX1) column matrices and
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introduce the {2nX2n) block matrix

01I
7= (.3, 6)
-1,0)°
where I, denotes the (nXn) identity matrix. We can now

state (see Refs. 12, 13) that the homogeneous linear
transformation

<Z,> = T(Z) [T = a real (21X 2n) matrix] @)
is symplectic if and only if

T'JT =J (' denoting matrix transpose) (5)
[i.e., conditions (1) take this form when the transfor-

mation y has form (4)]. Now in such a case T is neces-
sarily nonsingular, for (5) implies

det(T’JT) = (detT')(detJ) (detT) = (detJ) # 0,
i.e.,

(detT)+0.

The Hamiltonian (3) can now be regarded as a qua-
dratic form with matrix K having the block form

ul 0)
K:_l_< n ,
2\o I,

and thus a time-independent transformation of form (4)
leaves Hlg,p) invariant [see (2)] if and only if

T'KT =K. (6)
Hence, identifying the linear transformations (4) with
their matrices in the usual way, we find that L(H) is the
multiplicative group of time-independent matrices T
satisfying both the symplectic condition (5) and the in-
variance condition (6). In what follows we will assume
that T has block form

-(23)

where A, B, C, D are real time-independent (nXn)
matrices.

3. DERIVATION OF L(H} WHEN 1 # 0

A. Introduction

In this case direct use of (5) and (6) leads to com-
plicated matrix equations. Instead, since here X is
nonsingular (we have already noted that 7 must be non-
singular) we proceed as follows. From (6)

T' = K(KT)" =KT-K",
and substituting this into (5) gives

KT'K*JT=d, i.e., K'JT=TKJ. (5"

Conversely, if T satisfies (5') and (6) then it satisfies
(5) and (6). Now the block matrix (7) satisfies (5') if and
only if
w0
0 1

n

/A B
cpl”

0 I
-1, 0

A B\ fu'I O
coj\ o0 I

0 I
-1,0/)

which becomes
uiCc Dy [-B ulaA
-A =BJ  \-D uic/)’
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which in turn reduces to C=- uB and D=A, The re-
sulting matrix

A B
TZ(— uB A) ®)

satisfies (6) if and only if
A BY’ w0
0 I

A B ul, 0

\- B A -uB A)-\0 L)

which becomes

(;LA’A + u2B'B pA'B - uB’A) B <#1,. o)
uB’A- yA'B uB'B+A’A ) \ 0 L)
which in turn reduces to
A’A+uB'B=1I (9)
and
A'B-B'A=0. (10)

Thus L(H) is the multiplicative group of time-indepen-
dent matrices T having block form (8) with A, B satis-
fying (9) and (10). The identity element in L(H) corre~
sponds to A=1I,, B=0. We are now in a position to
prove the following results, which are valid for all »
=1,

Theorem 1: (1) If <0, then L(H)=GL{#).
(ii) If ©>0, then L{H)=U(n).

B. Proof of Theorem 1(i)

Suppose <0, and write g =-2x*%. Then condition (9)
becomes

A’A-\*B'B=1, @)

Lemma 1: The (nX#n) time~independent matrices A,

B satisfy (9’) and (10) if and only if

A+22B=F and A-~)*B=E'"! (11)
for some time-independent E<€ GL ().

Pyoof of Lemma 1: First note that A, B satisfy (9”)
and (10) if and only if

(A=XB)Y (A+A*B)=1,.
For if (9’) and (10) hold, then

(A- 2B (A+)2B)=(A’A -2\*B'B) +\*(A’'B-B'A)=1 .
Conversely, if (12) holds, then

(A’A-\'B'B) +\*(A’'B-B'A) =1,

n

12)

and taking transposes we find also
(A’A-2\*B'B) +2\3(B'A-A'B)=1,.

Together these give (9') and (10). But (12) is satisfied

if and only if (A4 +X%B) € GL(n) and (A -2*B)=(A +A%B)'"},
i.e., if and only if (11) holds for some time-independent
E& GL(n). This proves Lemma 1.

Thus L(H) is the multiplicative group of time-inde-
pendent matrices T having block form

A B '
TZ(A“B A) )
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with A, B satisfying (11) for some time-independent
EcGL{n).

It can be shown that the elements of L{H) generated
by H(q,p) itself correspond to our taking E= (e*zt)I,l (¢
= a real parameter) in (11).

Now express all elements of L{H) in the form (8’)
and consider the map ¢:L(H) — GL{n) defined by ¢(T)
=A+%B. Let T, T,< L(H). Then, since

Al Bl A2 BZ —_ A1A2+7\4BIBZ AIBZ+BlA2
2B, A, /\N*B, A, A\*A,B, + B/A,) AA, +)'B.B,/’

we obtain the homomorphism property
&(T,T,) ={A,A, +1*B,B,) +2*(A,B, + B/A,)
=(4, +22B))(4, +2%B,)
=¢(T)o(T,), all T,, T,< L(H).

Also for every E< GL(n) there exists an element T
€ L(H) such that ¢(T)=E. To construct T (in fact it is
unique), just define A, B by (11). In particular, if ¢(7)
=1I,, we must have (A +x?B)= (4 - x*B) =1, which gives
A=I and B=0, i.e., T must be the identity element in
L(H).

We have shown that ¢ is a group isomorphism between
L{H) and GL(n}, and identifying these isomorphic groups
we obtain Theorem 1(i).

Remark: Theorem 1(i) can also be proved by reducing
(3), via a symplectic transformation, to the form
AzEpiqin The method used here is easier, and also has
the advantage that the u >0 case can be dealt with (see
Sec. 3C next) along roughly similar lines.

C. Proof of Theorem 1 (ii)

Suppose ©>0, and write u=2x*, Then condition (9)
becomes

A’A+XB'B=I,. ©")

Lemma 2: The real {(nxn) matrices A, B satisfy (9”)
and (10) if and only if (A +A2B)c Uln).

Proof of Lemma 2: First note that A, B satisfy (9”)
and (10) if and only if
(A—iX?B)'(A+i\2B) =1,.
For if (9”) and (10) hold, then
(A -i2B) (A +i2B) =(A’A +\*B'B) + \*(A'B- B'A)=1,.
Conversely, if (13) holds, then
(A’A+iX'B'B)+iX2(A'B~ B A)=1I ,

(13)

and taking real and imaginary parts gives (9”) and (10).
Now (13) is the condition {A +ix2B) € U(n). Conversely,
if U< U(n) is expressed in the form

U=A+ix2B (A, B real matrices), (14)

then (A —i2BY = U’ =U"!, and (13) is satisfied. Thus
(13) itself is satisfied if and only if (A +ix2B) € U(n).
This proves Lemma 2.

Thus L(H) is the multiplicative group of time-inde-
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pendent matrices T having block form

A B "
T= <—>\4B A) ")

with (A +i2B) <€ Un).

It can be shown that the elements of L{H) geneé‘ated
by H(g,p) itself correspond to our taking U= (e?*)I (¢
= a real parameter) in (14),

Now express all elements of L(H) in the form (8")
and consider the map §: L(H)— U(n) defined by #(T)=A
+iA%B. It is straightforward to verify the homomor-
phism property

W(T,T,) =9(T)H(T,), all T,, T,< L(H).

Also for every U€ U(n) there exists an element T & L(H)
such that #(T)=U. To construct T (in fact it is unique),
just define A, B by (14). In particular, if $(T) =1, we
must have A=1I and B=0, i.e., T must be the identity
element in L(H).

We have shown that i is a group isomorphism between
L(H) and U(n), and identifying these isomorphic groups
we obtain Theorem 1(ii).

Remark: Theorem 1(ii) is essentially the statement'*
Sp, RN O (2n)= U(n). A similar result to this is proved
in Helgason’s book [see Ref. 13, p. 342, Lemma 4.1.,
part (c¢)], and when p=1 our proof reduces to a more
detailed version of his.

D. Comments on Theorem 1

Note that in both cases the set N of matrices having
block form (8) with B=0 and A’A=1 (i.e., A< O(n))
forms a subgroup of L(H) isomorphic to O(n), the ob-
vious symmetry group for H(g,p). Thus in both cases
we get higher symmetry for all =1,

It can be shown that in both cases L(H) is generated
by the »? conserved quantities consisting of the 3n(n—1)
angular momenta

@b, —a,p, G#9) G,i=1,2,...,n) 15)
which generate N and the in+1) quantities
piby+ bayg, G=1,2,...,n). (16)

For u> 0 these can be combined to give the Hamiltonian
(3) itself, together with (#% - 1) quantities which gener-
ate SU(n). A possible set of SU(n) generators for the u
=1 case was given by Jauch and Hill,!® who were the
first to connect the SU(x) Lie algebra and the n-
oscillator.

4. DERIVATION OF L(H) WHEN u =0
A. Introduction

Suppose p=0. In this case we make direct use of (5)
and (6). The block matrix (7) satisfies (6) if and only if

(€ 2) (1) 5)=( 1)

which becomes
<c’c C'D\ (0 0
DC DD/ \01)’
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which in turn reduces to D'D=I and C=0. The result-
ing matrix

A B
r=( 1)
satisfies (5) if and only if
AB\'[0 IN/AB\ [0 I
0 b/ \-1,0/\0 D) \-1,0)

which becomes

< 0 AD ): ( 0 1,,)
-D'A BD-D'B) " \-1,0)’
i.e.,
A'D=D'A=I, amn
and
B'D-D'B=0. (18)
Since D'D=I,, condition (17) reduces to A=D""'=D and
A'A=1, (19)

and (18) reduces to
B'A-A'B=0. (20)

Thus L(H) is the multiplicative group of time-inde-
pendent matrices T having block form

A B
r=(3 %) (21)
with A, B satisfying (19) and (20). [Although (19) can be
obtained by putting pu=0 into (9), and (20) is just (10),
our derivation of (9) and (10) was valid only for p+0.]
Note that when A =I condition (20) becomes B’ =B. It
can be shown that the elements of L(H) generated by
H(q,p) itself correspond to our setting A=1, B=tI,

(= a real parameter) in (21).

Now the g-translations, i.e., the canonical trans-
formations of form

(q,P)"(CIH‘OIU lI2+az,---;(J,,+0’,,, ]71,---,1),,)

(a, = arbitrary)

clearly also leave the n-dimensional free particle
Hamiltonian invariant, Combining these with L(H), we
obtain a subgroup IL(H) of S(H) consisting of all time-
independent inhomogeneous linear canonical
transformations

(3)~(0 2)()* (o) a2
where A, B satisfy (19) and (20), and

(.1
<0) = (), 0, ...,0.,0,...,0),
with the o, arbitrary.

It is worth noting that IL(H) is a proper subgroup of
S(H), for S(H) also contains all canonical transforma-
tions of form

(g,p)— (Ch +0), ¢+ 0., ... ydy +f,,(p,,), Proees ,P,,),
(23)
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and not all of these are in IL(H).

Now let & =(&;,0,,...,0,), and denote the trans-~
formation (22) by (4, B,a). Then the identity element in
IL(H) is the transformation ({ ,0,0), and we find that
products and inverses in IL(H) are given by

(A1,B1:°‘1)(A2, B,, az):(AlAw AB,+BA,, a, tAa,)
(24)

and

(A,B,a)'=(A", ~A'BA’, - A'a). (25)

B. Semidirect product structure of /L(H)

Suppose a group G (denote its identity element by e)
has a normal subgroup M and an ordinary subgroup S
such that MN S={e} and such that every element g€ G
can be expressed in at least one way as a product g
=ms with m& M and s€S. Then (see Ref. 16, p. 100)
we say G is a semidivect product of M and S, We will
denote this by G=M=*S. It can be shown that because
Mn S ={e}, the expression of g as a product ms is
unique.

To reconstruct G from M and S we need to know, for
each s€ S, the automorphism m — sms™! of M (for de~
tails see Ref, 16),

Theorem 2: For all n=1,

IL(H) =Rr(mD /24 E(y),

C. Proof of Theorem 2

Lemma 3: The set S={(4,0,a):A’A=I and &
=arbitrary} is a subgroup of IL(H), and S= E(x).

Proof of Lemma 3: Certainly S is a subset of IL(H),
and from (24) and (25) we get
(4,,0,0,)(A;,0,0,) =(4,4,,0,0, + Ajar,), (26)
(4,0,0)'=(A",0,-A'a),
showing that S is a subgroup of IL(H).

Now the n-dimensional Euclidean group E(n) is just
the set of transformations on R” of form

A,a):x—~Ax+ao,

where A’A=1 , « is arbitrary, and the (»X1) column
matrix x denotes a typical point of R*. In particular the
product of elements of E(n) is given by

A, a)A,,0,)=A4,,0, +4,0,). @7

By using (26) and (27) it is easy to verify that the
map (A,0,a)— (A,a) is a group isomorphism between S
and E(n). This proves Lemma 3.

Lemma 4: The set M={(I , B,0): B’ = B} is a normal
subgroup of IL(H), and M=Rn(m1)/2,

Proof of Lemma 4: Certainly M is a subset of IL{H).
But from (24) and (26) it is easy to see that the map
(A,B,a)—(A4,0,qa) is a group homomorphism from
IL(H) onto S, and since M is just its kernel, M must be
a normal subgroup of IL(H). Also from (24)

(,,B,,0)1,,B,,0)=(,B, +B,,0),
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and it is now easy to verify that the map (I, B,0)— B is
a group isomorphism between M and the additive group
of real symmetric (#Xn) matrices. Since the latter is
itself isomorphic to R*{™1)/2 there being n(n +1)/2 in-
dependent entries in a symmetric (#X#») matrix, we
have M=R"(1)/2  This proves Lemma 4.

Lemma 5: Every element in IL(H) can be expressed
in at least one way as a product ms with m < M and
seSs,

Proof of Lemma 5: If the (nXn) matrices A, B satisfy
(19) and (20), then also

A(BA)A’ =A(A’B)A’
i.e.
AB' =BA’.

Thus a typical element (A, B,«) in IL(H) can be ex-
pressed as

(4,B,a)=( ,BA",00(A,0,a),
which is of the form required. This proves Lemma 5.

Now every element (4, B,«) in MN S must have A
=1, a=0, and B=0, i.e., must be the identity ele-
ment in IL(H). This, together with Lemmas 3—5,
proves that IL (H) =M S. Identifying M with Rn(m+)/2
and S with E(n), we obtain Theorem 2.

It is worth noting that, for s=(4,0,a)€ S and m
={,B,00c M,

sms™=(A,0,a)(,,B,0)(4",0,- A’a) = (I ,ABA’,0).

D. Comments on Theorem 2

Since the obvious symmetry group for the n~dimen-
sional free particle is just E{n), Theorem 2 shows that
it exhibits higher symmetry for all n= 1. Note that,
due to our restriction to time-independent canonical
transformations, the group IL(H) intersects the n-di-
mensional Galilei group in the subgroup S only. Note
also that the set N (defined in Sec. 3D) again forms a
subgroup of L(H) [and hence of IL(H)] isomorphic to
o).

It can be shown that IL{H) is generated by the (n®>+n)
conserved quantities consisting of the angular momenta
(15) (which, as previously, generate N) and the n{n +3)
quantities

f),-f)j, .Di (iaj:]-yzy--~,n)o (28)

The p, generate the g-translations, and the remaining
»n® quantities generate L(H). It can be shown that L(H) is
itself a semidirect product R"¢"*1/2x O(n).

5. QUANTUM-MECHANICAL CONSIDERATIONS

A classical mechanical symmetry will go over to
quantum mechanics if the corresponding symmetry
group G can be mapped isomorphically onto a group of
unitary operators which commute with the quantum-
mechanical Hamiltonian. In particular the generators
of G must map isomorphically onto a Lie algebra of
skew-adjoint operators which commute with the quan-
tum-mechanical Hamiltonian, although this by itself
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will not be sufficient as the corresponding group will
still have to be constructed (see Ref. 17). However,
even the weaker step of constructing the Lie algebra of
operators cannot always be carried out (see Refs. 12,
18).

If the classical generators are all at most quadratic
in the canonical variables, they can be mapped iso-
morphically onto a suitable Lie algebra of skew-adjoint
operators, and the corresponding unitary group can be
constructed (see Refs. 12, 18), We therefore expect
[ef. (15), (16), (28)] that the groups L(H), IL(H) will
have quantum-mechanical significance when u#0, 4
=0 respectively in (3). Now, when u>0, the group
SU(n) [the connected component of the identity of L(H)
= U(n)] accounts for the degeneracies (see Ref. 15), but
when u <0 there are no bound states, and so we cannot
then invoke degeneracies as a guide.

An analysis of the quantum-mechanical significance of
the free particle group R"®*)/2« E(n) would be particu-
larly interesting, and for this reason the fact that it has
a semidirect product structure seems especially con-
venient. We emphasize that it is an “invariance” group
for the classical system.

We note that such an analysis has already been car-
ried out thoroughly (see Refs. 19, 20) for the Galilei
group.
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Addendum: Determination of the amplitude from the differential
cross section by unitarity [J. Math. Phys. 9, 2050 (1968)]

Roger G. Newton

Physics Department, Indiana University, Bloomington, Indiana 47401
(Received 14 February 1975)

A. Martin has brought an early reference to my at-
tention which both he and I were unaware of when we
wrote our papers™?: N.P. Klepikov, Zh. Eksp. Teor.
Fiz. 47, 757 (1964) [Sov. Phys. JETP 20, 505 (1965)].
Klepikov presented a uniqueness condition similar to

those of Martin and myself, and I apologize for the
omission of a reference to his work.

IR.G. Newton, J. Math, Phys, 9, 2050 (1968).
2A. Martin, Nuovo Cimento A 59, 131 (1969).

Erratum: A minimum principle for von Neumann’s equation [J.
Math. Phys. 16, 158 (1975)

Sidney Golden

Department of Chemistry, Brandeis University, Waltham, Massachusetts 02154
(Received 18 February 1975)

A typographical omission from the above paper: the

last equation should be

Apo(to) =minimum,

(4.15)
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